Recent Program-Supported Publications

The U.S. Department of Energy Isotope Program (DOE IP) supports research and development of novel methods to produce isotopes of national interest or of new or improved technologies that foster enhanced isotope production. The following research manuscripts acknowledge the DOE IP for their funding contributions.

Note: This is not a comprehensive list of publications related to the DOE IP. Our list attempts to capture all publications from 2019 and beyond.

Applied Radiation and Isotopes

Photonuclear production of 47Ca for 47Ca/47Sc generator from natural CaCO3 targets

Abstract

This work investigated the indirect production of 47Sc from natural Ca targets via 48Ca(γ,n)47Ca→47Sc + β + ν ¯ e with incident electron energies of 30, 35, and 40 MeV. The 47Ca production yields were simulated using the PHITS Monte Carlo simulation code and compared to experimental data. The simulated production rates for all three irradiations are in good agreement with experimental data within uncertainties. As a demonstration of the 47Ca/47Sc generator system, one of the irradiated CaCO3 targets was dissolved in nitric acid, and 47Sc was isolated from the target material using commercially available Eichrom DGA resin. The 47Sc was allowed to grow in, and the purification process was repeated with promising 47Sc and Ca recovery yields.

 

Overviewof radiolabeling and quality control protocols for Bi-212MAA assays

Effective therapy with Bismuth-212 labeled macroaggregated albumin in orthotopic mouse breast tumor models

Intravascularly administered radiation therapy using beta (β-)-emitting radioisotopes has relied on either intravenously injected radiolabeled peptides that target cancer or radiolabeled microspheres that are trapped in the tumor following intra-arterial delivery. More recently, targeted intravenous radiopeptide therapies have explored the use of alpha (α)-particle emitting radioisotopes, but microspheres radiolabeled with α-particle emitters have not yet been studied. Here, FDA-approved macroaggregated albumin (MAA) particles were radiolabeled with Bismuth-212 (Bi-212-MAA) and evaluated using clonogenic and survival assays in vitro and using immune-competent mouse models of breast cancer. The in vivo biodistribution of Bi-212-MAA was investigated in Balb/c and C57BL/6 mice with 4T1 and EO771 orthotopic breast tumors, respectively. The same orthotopic breast cancer models were used to evaluate the treatment efficacy of Bi-212-MAA. Our results showed that macroaggregated albumin can be stably radiolabeled with Bi-212 and that Bi-212-MAA can deliver significant radiation therapy to reduce the growth and clonogenic potential of 4T1 and EO771 cells in vitro. Additionally, Bi-212-MAA treatment upregulated γH2AX and cleaved Caspase-3 expression in 4T1 cells. Biodistribution analyses showed 87–93% of the Bi-212-MAA remained in 4T1 and EO771 tumors 2 and 4 h after injection. Following single-tumor treatments with Bi-212-MAA there was a significant reduction in the growth of both 4T1 and EO771 breast tumors over the 18-day monitoring period. Overall, these findings showed that Bi-212-MAA was stably radiolabeled and inhibited breast cancer growth. Bi-212-MAA is an exciting platform to study α-particle therapy and will be easily translatable to larger animal models and human clinical trials.

 

Evaluation of 177 Lu and 47 Sc Picaga-Linked

Evaluation of 177 Lu and 47 Sc Picaga-Linked, Prostate-Specific Membrane Antigen-Targeting Constructs for Their Radiotherapeutic Efficacy and Dosimetry

Abstract

Lu-177-based, targeted radiotherapeutics/endoradiotherapies are an emerging clinical tool for the management of various cancers. The chelator 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) remains the workhorse for such applications but can limit apparent molar activity or efficient charge modulation, which can impact target binding and, as a consequence, target efficacy. Previously, our lab had developed the small, rare earth selective bifunctional chelator, picaga, as an efficient bifunctional chelator for scandium and lutetium isotopes. Here, we assess the performance of these constructs for therapy in prostate-specific membrane antigen (PSMA)-expressing tumor xenografts. To assess the viability of picaga conjugates in conjunction with long in vivo circulation, a picaga conjugate functionalized with a serum albumin binding moiety, 177Lu-picaga-Alb53-PSMA, was also synthesized. A directly comparative, low, single 3.7 MBq dose treatment study with Lu-PSMA-617 was conducted. Treatment with 177Lu-picaga-Alb53-PSMA resulted in tumor regression and lengthened median survival (54 days) when compared with the vehicle (16 days), 47Sc-picaga-DUPA-, 177Lu-picaga-DUPA-, and 177Lu-PSMA-617-treated cohorts (21, 23, and 21 days, respectively).

Nuclear data for reactor production of Ba-131 and Ba-133

Nuclear data for reactor production of Ba-131 and Ba-133

The newest radioisotope for brachytherapy treatment of prostate cancer is 131Cs (t1/2 = 9.69 d, 100% EC). Generated via electron capture decay of 131Ba (t1/2 = 11.6 d, 100% EC), 131Cs has been used in brachytherapy for prostate cancer since 2004. The 131Ba parent is produced through neutron capture of enriched 130Ba in a nuclear reactor. For large-scale production of 131Ba, an accurate knowledge of production and burnup cross sections of 131Ba are essential. In this paper, we report two group cross sections (thermal and resonance integrals) for 130Ba and 131Ba and a new measure of the half-life of 131Ba. Targets consisting of milligram quantities of enriched 130Ba (∼35%) were irradiated in Oak Ridge National Laboratory's High Flux Isotope Reactor at thermal and resonance neutron fluxes of (1.9–2.1) × 1015 and (5.8–7.0) × 1013 neutrons·cm−2 s−1, respectively, for durations ranging from 3 to 26 days. In addition, cadmium covered samples of 130Ba were irradiated for 1 hour at 12.6% full reactor power (10.7 MW). The yield of 131Ba approaches a saturation value of ∼60 GBq (∼1.6 Ci) per mg of 130Ba for 20 days irradiation at a thermal neutron flux of 1.8 × 1015 n·s−1·cm−2, with a thermal/epithermal ratio of ∼30. Under the above experimental conditions, the two group cross sections of 130Ba are 6.9 ± 0.5 b (thermal, σ0) and 173 ± 7 b (resonance, I0). These values represent the sum of cross sections to metastable and ground states of 131Ba. For 131Ba, the empirically measured thermal cross section is 200 ± 50 b assuming an I00 of 10. This cross section is reported for the first time. Further, the half-life of 131Ba was remeasured to be 11.657 ± 0.008 d. Lastly, this study also resulted in the co-production of 133Ba (t1/2 = 10.52 y, 100% EC). The experimental yield of 133Ba is ∼370 MBq (∼10 mCi) per mg of 132Ba (thin target) for one cycle irradiation in the High Flux Isotope Reactor, and measured two-group 132Ba cross sections are 7.2 ± 0.2 b and 39.9 ± 1.3 b. These values also represent the sum of cross sections to metastable and ground states of 133Ba.

Visions by Women in Molecular Imaging Network: Antiracism and Allyship in Action

Visions by Women in Molecular Imaging Network: Antiracism and Allyship in Action

Recent events in America in 2020 have stimulated a worldwide movement to dismantle anti-Black racism in all facets of our lives. Anti-Black racism is, as defined by the Movement for Black Lives, a “term used to specifically describe the unique discrimination, violence, and harm imposed on and impacting Black people specifically.” In science, technology, engineering, and mathematics (STEM), we have yet to achieve the goal and responsibility to ensure that the field reflects the diversity of our lived experiences. Members of the Women in Molecular Imaging Network (WIMIN) have come together to take a stand on diversity, equity, and inclusion in the field of molecular imaging. We strongly condemn oppression in all its forms and strive to identify and dismantle barriers that lead to inequities in the molecular imaging community and STEM as a whole. In this series coined “Visions” (Antiracism and Allyship in Action), we identify and discuss specific actionable items for improving diversity and representation in molecular imaging and ensuring inclusion of all members of the community, inclusive of race, disability, ethnicity, religion, or LGBTQ+ identity. Although the issues highlighted here extend to other under-recruited and equity-seeking groups, for this first article, we are focusing on one egregious and persistent form of discrimination: anti-Black racism. In this special article, Black women residing in America present their lived experiences in the molecular imaging field and give candid insights into the challenges, frustrations, and hopes of our Black friends and colleagues. While this special article focuses on the experiences of Black women, we would like the readers to reflect on their anti-Blackness toward men, transgender, nonbinary, and gender non-conforming people. From the vulnerability we have asked of all our participants, these stories are meant to inspire and invoke active antiracist work among the readership. We present strategies for dismantling systemic racism that research centers and universities can implement in the recruitment, retention, mentorship, and development of Black trainees and professionals. We would like to specifically acknowledge the Black women who took the time to be interviewed, write perspectives, and share their lived experiences in hopes that it will inspire genuine and lasting change.

Investigating high-energy proton-induced reactions on spherical nuclei: Implications for the preequilibrium exciton model

Investigating high-energy proton-induced reactions on spherical nuclei: Implications for the preequilibrium exciton model

A number of accelerator-based isotope production facilities utilize 100- to 200-MeV proton beams due to the high production rates enabled by high-intensity beam capabilities and the greater diversity of isotope production brought on by the long-range of high-energy protons. However, nuclear reaction modeling at these energies can be challenging because of the interplay between different reaction modes and a lack of existing guiding cross-section data.

Radioarsenic: A promising theragnostic candidate for nuclear medicine

Radioarsenic: A promising theragnostic candidate for nuclear medicine

Molecular imaging is a non-invasive process that enables the visualization, characterization, and quantitation of biological processes at the molecular and cellular level. With the emergence of theragnostic agents to diagnose and treat disease for personalized medicine there is a growing need for matched pairs of isotopes. Matched pairs offer the unique opportunity to obtain patient specific information from SPECT or PET diagnostic studies to quantitate in vivo function or receptor density to inform and tailor therapeutic treatment. There are several isotopes of arsenic that have emissions suitable for either or both diagnostic imaging and radiotherapy. Their half-lives are long enough to pair them with peptides and antibodies which take longer to reach maximum uptake to facilitate improved patient pharmacokinetics and dosimetry then can be obtained with shorter lived radionuclides. Arsenic-72 even offers availability from a generator that can be shipped to remote sites and thus enhances availability. Arsenic has a long history as a diagnostic agent, but until recently has suffered from limited availability, lack of suitable chelators, and concerns about toxicity have inhibited its use in nuclear medicine. However, new production methods and novel chelators are coming online and the use of radioarsenic in the pico and nanomolar scale is well below the limits associated with toxicity. This manuscript will review the production routes, separation chemistry, radiolabeling techniques and in vitro/in vivo studies of three medically relevant isotopes of arsenic (arsenic-74, arsenic-72, and arsenic-77).

Alpha emitting nuclides for targeted therapy

Alpha emitting nuclides for targeted therapy

Targeted alpha therapy (TAT) is an area of research with rapidly increasing importance as the emitted alpha particle has a significant effect on inducing cytotoxic effects on tumor cells while mitigating dose to normal tissues. Two significant isotopes of interest within the area of TAT are thorium-227 and actinium-225 due to their nuclear characteristics. Both isotopes have physical half-lives suitable for coordination with larger biomolecules, and additionally actinium-225 has potential to serve as an in vivo generator. In this review, the authors will discuss the production, purification, labeling reactions, and biological studies of actinium-225 and thorium-227 complexes and clinical studies.

New Journal of Chemistry

Harvesting 62Zn from an aqueous cocktail at the NSCL

“Isotope harvesting” is a technique that offers access to exotic radionuclides created as by-products during nuclear science research. Ongoing exploratory work at the National Superconducting Cyclotron Laboratory (NSCL) is directed towards the production and extraction of rare radionuclides from a flowing-water target and intends to pave the way for future harvesting efforts at the upcoming Facility for Rare Isotope Beams (FRIB). Here we present the collection of 62Zn from an aqueous matrix irradiated with a 150 MeV per nucleon 78Kr beam, while synergistically capturing other gaseous reaction products. In addition to the production rate for 62Zn (9.08(30) × 10−5 62Zn per incoming 78Kr), the rates of formation for several other radionuclides were determined as well. The purification of 62Zn from a large number of co-produced radionuclides was performed by anion exchange chromatography, allowing the isolation of 80.5(5.2)% of the generated 62Zn. With the decay of 62Zn the radioactive daughter 62Cu is generated, and with the isolation of pure 62Cu eluate, the principle of a medical radionuclide generator could be demonstrated. To illustrate the applicability of the obtained 62Zn, the isolated product was used in free and DTPA-labelled form in a proof of principle plant uptake study with garden cress employing phosphor imaging for visualization.

Production, Collection, and Purification of 47Ca for the Generation of 47Sc through Isotope Harvesting at the National Superconducting Cyclotron Laboratory

Production, Collection, and Purification of 47Ca for the Generation of 47Sc through Isotope Harvesting at the National Superconducting Cyclotron Laboratory

An experiment was performed at the National Superconducting Cyclotron Laboratory using a 140 MeV/nucleon 48Ca beam and a flowing-water target to produce 47Ca for the first time with this production route. A production rate of 0.020 ± 0.004 47Ca nuclei per incoming beam particle was measured. An isotope harvesting system attached to the target was used to collect radioactive cationic products, including 47Ca, from the water on a cation-exchange resin. The 47Ca collected was purified using three separation methods optimized for this work: (1) DGA extraction chromatography resin with HNO3 and HCl, (2) AG MP-50 cation-exchange resin with an increasing concentration gradient of HCl, and (3) AG MP-50 cation-exchange resin with a methanolic HCl gradient. These methods resulted in ≥99 ± 2% separation yield of 47Ca with 100% radionuclidic purity within the limits of detection for HPGe measurements. Inductively coupled plasma-optical emission spectrometry (ICP-OES) was used to identify low levels of stable ions in the water of the isotope harvesting system during the irradiation and in the final purified solution of 47Ca. For the first time, this experiment demonstrated the feasibility of the production, collection, and purification of 47Ca through isotope harvesting for the generation of 47Sc for nuclear medicine applications.