Department of Radiology and Biomedical Imaging

Development of ¹³⁴Ce/La pa imaging surrogate for ²²⁵Ac rac in prostate cancer

Robert R. Flavell, MD, Phl

Associate Professor Division Chief, Molecular Imaging and Tr Department of Radiology and Biomedical Integing, o

K. Naidu Bobba, PhD Assistant Professional Researcher, UCSF

²²⁵Ac radionuclide therapy

- Targeted alpha particle therapy with ²²⁵Ac demonstrates great promise for cancer treatment
- ✓ For example, [²²⁵Ac]PSMA-617 is effective in the treatment of PCa patients

[²²⁵Ac]PSMA-617

[²²⁵Ac]DOTA-YS5: 22Rv1 tumors

✓ Difficult to directly measure the in vivo PK of ²²⁵Ac labeled molecules

Kratochwil K, et al., J Nuc Med. 2016, 57: 1941-1944

Bidkar AP, et al., Clin Cancer Res. 2023, 29: 1916–1928

²²⁵Ac Imaging?

 Two "Imageable" daughters; emits low-energy γ-rays, which are challenging to image with SPECT

♦ Wilson JJ, et al., Cancer Biother Radiopharm. 2018, 33: 336-348

✓ Actinium, Cerium, Lanthanum, Neodymium and Praseodymium

- ✓ Similar chemical properties
- ✓ Ionic radii (+3): Ac (1.12 Å), La (1.03 Å), Ce (1.01 Å), Pr (1.13 Å), Nd (1.11 Å)

Imaging Surrogates for 225Ac

Isotope	Half-life	Max β+ energy (MeV)	β+ branching ratio (%)	Challenges
⁶⁴ Cu/ ⁶⁸ Ga/ ⁸⁹ Zr	12.7/1.1/78 h			dissimilar chemistry
¹³⁰ La	8.7 m	4.29	71	High β + energy; Short t _{1/2} ; ¹³⁰ Ba (0.1%)
¹³¹ La	59 m	1.89	23	Low β + branching; ¹³¹ Ba (0.1%)
¹³² La	4.59 h	3.67	41	t _{1/2} ; Long-lived daughter (10 ²¹ y)
¹³³ La	3.91 h	1.02	7	$t_{1/2}$; Low β + branching; 10.5 y daughter
¹³⁴ Ce/ ¹³⁴ La	77 h /6.5 m	2.71	64	
¹³⁶ La	9.9 min	1.83	35	Short $t_{1/2}$; Low β + branching

✓ ¹³⁴Ce/La pair may serve as a better PET imaging surrogate for ²²⁵Ac therapy

- Nelson BJB, et al., J Nuc Med. 2022, 63: 584-90
- ✤ Alicio-Sarduy E, et al., J Nuc Med. 2021, 62: 1012-5

¹³⁴Ce/La pair

✓ ^{nat}La (p, 6n) yielding ¹³⁴Ce

✓ ¹³⁴Ce/La is an in-situ generator

6

Bailey TA, et al., Nature Chemistry, 2021,13: 284-289
 Lubberink M, Tolmachev V, et al., Phys. Med. Biol. 2002, 47: 615–29

✤¹³⁴Ce/La pair (Abergel lab)

✓ DTPA & DOTA

✓ Higher molar ratios (1000:1, L:M)

✓ Higher Temp.(45 °C)

Bailey TA, et al., Nature Chemistry, 2021,13: 284-289
Bailey TA, et al., Nuclear Medicine and Biology, 2022, 28: 110–111

Objective

- ✓ Develop a robust radiolabeling method for chelation with ¹³⁴Ce, which can serve as a surrogate for ¹³⁴Ce/²²⁵Ac theranostic agents.
- ✓ Utilize the developed methods for prostate cancer imaging using the small molecule PSMA-617, and prostate cancer targeting antibody YS5

Thiele NA, et al., Angew Chem. 2017,129:14904–14909

Model chelator studies: Macropa.NH₂ & DOTA

 \checkmark Macropa.NH₂ is effective at a lower ligand-to-metal ratios than DOTA

TLC : C18, 10% NH₄CI:MeOH (1:1)

Bobba KN, et al., JNM, 2023, 00:1-7, DOI:10.2967/jnumed.122.265355

9

¹³⁴Ce-DOTA/Macropa.NH₂ in vivo

- ✓ High in vivo stability of ¹³⁴Ce-DOTA and Macropa.NH₂
- ✓ ²²⁵Ac &¹³⁴Ce-DOTA/Macropa ex-vivo biodistribution are largely similar

Bobba KN, et al., JNM, 2023, 00:1-7, DOI:10.2967/jnumed.122.265355

Department of Radiology and Biomedical Imaging

Radiolabeling of ¹³⁴Ce-PSMA-617

In vitro studies in PCa cells with ¹³⁴Ce-PSMA-617

PET Imaging of ¹³⁴Ce-PSMA-617 in dual xenograft models

PC3 PiP = PSMA positive PC3 Flu = PSMA negative

¹³⁴Ce-PSMA-617_BioD

Radiolabeling of Macropa-PEG₄-YS5

✓ Able to visualize the recoil emission of ¹³⁴La from the chelates by TLC
 ✓ Similar observations with ¹³⁴Ce-PSMA-617

TLC: ITLC-SG, 10 mM EDTA, pH=5.5

Bobba KN, et al., JNM, 2023, 00:1-7, DOI:10.2967/jnumed.122.265355

In vitro assay

Immunoreactivity assay

16

Binding constant in 22Rv1 cells

✓ It could be synthesized effectively with 1:1 ligand-to-metal ratios, with a little or no loss of CD46 binding affinity

PET Imaging

- ✓ 22Rv1 xenografts at various time points 4 h to 7 days p.i.; n=4
- ✓ High tumor uptake, low in background tissues except for the Liver

◆ Bobba KN, et al., JNM, 2023, 00:1-7, DOI:10.2967/jnumed.122.265355

17

Biodistribution of ¹³⁴Ce/²²⁵Ac-Macropa-PEG₄-YS5

✓ 22Rv1 xenografts at 7 d (n=5) p.i.

- ✓ Similar uptake in tumor and most of the visualized tissues for ²²⁵Ac and ¹³⁴Ce
- ✓ Significant differences in the liver (p<0.0001) and spleen (p=0.0109) uptake were observed at 7 d p.i.

Summary

- ✓ Radiolabeling methodology for ¹³⁴Ce is suitable for small molecules using DOTA, biomolecules benefit from Macropa chelate
- ✓ In vivo PET imaging revealed high in vivo stability of ¹³⁴Ce-DOTA/Macropa.NH₂ ✓ ¹³⁴Ce-PSMA-617 has similar *in vitro* cell binding to ²²⁵Ac-PSMA-617
- ✓ PET imaging of ¹³⁴Ce-Macropa-PEG₄-YS5, showed a high tumor uptake at 7d p.i.
- ✓ The ex vivo biodistribution was consistent with the ²²⁵Ac-Macropa-PEG₄-YS5 in tumor and most tissues, with the exception of liver and spleen
- ✓ Therefore, ¹³⁴Ce/²²⁵Ac could serve as a theranostic pair for prostate cancer

Acknowledgements

Flavell lab **K. Naidu Bobba** Anil Bidkar Anju Wadhwa Changhua Mu Umama Ali Ramya Ambur Sankaranarayananan Megha Basak Athira Raveendran

Youngho Seo + UCSF MicroPET facility Robin Peter Becka Schuere

Bin Liu Scott Bidlingmeier

Henry VanBrocklin

DOE Isotope Development Grant DE SC0023467

US DOE for ²²⁵Ac and ¹³⁴Ce

DoD Translational science PCRP awards W81XWH-20-1-0292, W81XWH-21-1-0792

R01 CA271606, CA279203

UCSF Precision Imaging of Cancer and Therapy Award

Thank you for your attention!

Questions? Robert.Flavell@ucsf.edu

