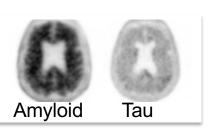
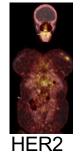
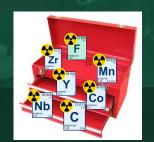

Production of high purity and high specific activity ²⁰³Pb at UAB

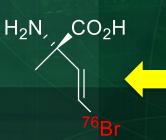

Jennifer Bartels, PhD
Cyclotron Facility Director, Suzanne Lapi, PhD
DOE IP Virtual Seminar Series, 10/05/23



Knowledge that will change your world

Translational Molecular Imaging Program at UAB


FDA Approved Drugs


[68Ga]DOTATATE (NETSPOT™)

[68Ga]PSMA-11 (LOCAMETZ®)

Active Radiotracers for INDs

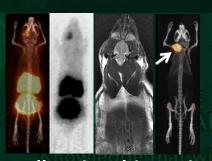
Clinical trials with molecular imaging and therapeutic

Isotope production and MI agent development

UAB Cyclotron Facility

[¹⁸ F]FLT	Cell proliferation imaging
[¹³ N]Ammonia	Cardiac perfusion
[¹⁸ F]FMISO	Hypoxia imaging
[⁸⁹ Zr]Trastuzumab	HER2 imaging
[¹⁸ F]DPA-714	TSPO-neuroinflammation
[¹⁸ F]FET	Amino acid transport
[¹¹ C]PiB	Beta-amyloid plaque imaging
[¹⁸ F]AV1451	Tau aggregates
[⁸⁹ Zr]Panitumumab	EGFR status (colon)
[¹¹ C]Acetate	Cardiac metabolism
[⁶⁸ Ga]GZP	Immune response
[89Zr]Oxine/WBCs	WBC tracking
[¹⁸ F]FES	Estrogen receptor targeting
[⁶⁸ Ga]FAP-2286	Fibroblast activation protein
[¹⁸ F]BMS-986327	LPA1 targeting in IPF

Use


Neuroendocrine tumors

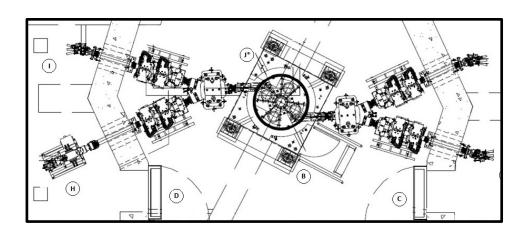
Prostate cancer imaging

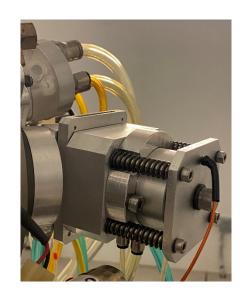
PET/CT and PET/MRI in AIF

In vitro testing

Small animal imaging

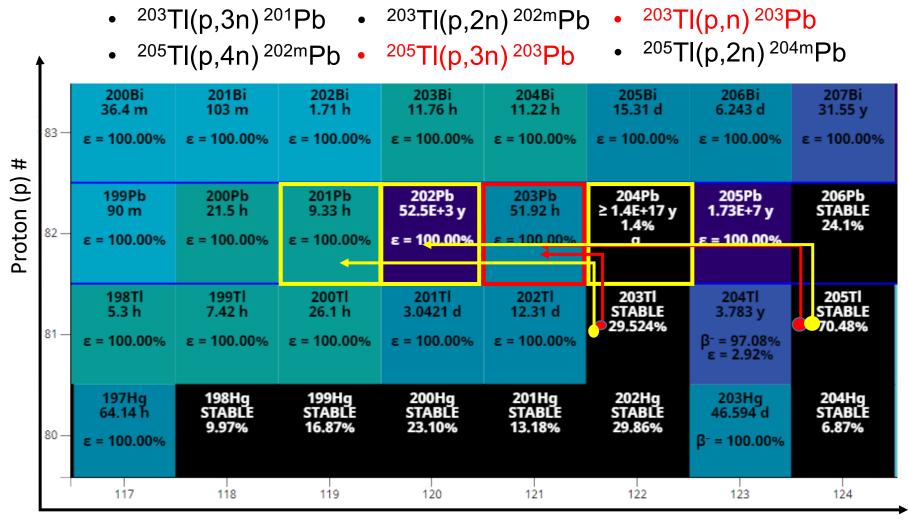
UAB Cyclotron and Advanced Imaging Facilities


- GE Signa 3-T PET/MRI
- Two GE 710 TOF PET/CTs
- ☐ Metabolite Analysis
- Cyclotron control room
- TR-24 cyclotron/equipment room
- Preclinical radiochemistry/Radiometal purification
- Human use QC
- cGMP production
- Radiopharmacy



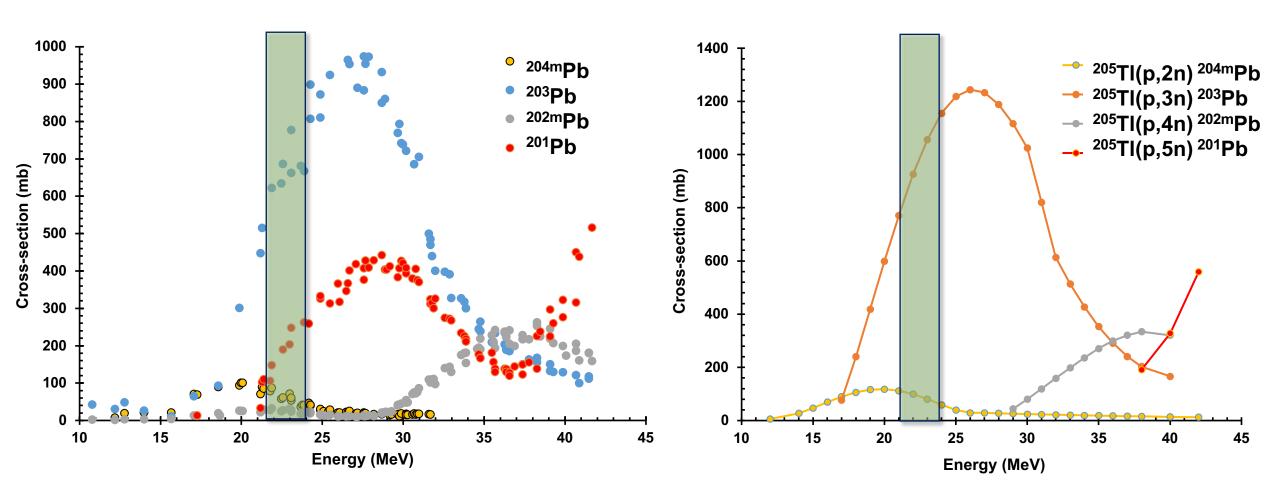
UAB Cyclotron Facility

- TR-24 (Advanced Cyclotron Systems, Inc) Cyclotron
 - → Variable energy protons, 17-24 MeV
 - \rightarrow Current up to 300 μ A
 - → Dual extraction ports, 4 beamlines
 - → Solid, liquid and gas targets



Current list of Isotopes

	UAB Radioisotope Toolbox					
Isotope	Status					
⁴³ Sc	3.89 h	46Ti Routine production for preclinical use				
44m/44g S C	58.6 h/3.97 h	47Ti Routine production for preclinical use				
45 T i	185 min	^{Nat} Sc	Routine production for preclinical use			
47Sc	3.35 d	^{48/50} Ti	Chemistry development, preclinical use			
⁶⁴ Cu	12.7 h	⁶⁴ Ni	Routine production for preclinical and human use			
89 Z r	78.4 h	89 Y	Routine production for preclinical and human use			

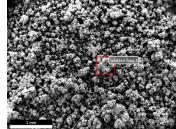

	Department of Energy University Isotope Network Radioisotopes						
Isotope	Isotope Half-life Target material Status						
48 V	48V 16.0 d NatTi Chemistry development, preclinical use						
⁵² Mn	5.59 d	^{Nat} Cr	Routine production for preclinical use				
⁵⁵ Co	17.5 h	⁵⁸ Ni	Routine production for preclinical use				
²⁰³ Pb	2.1 d	205 T	Routine production for preclinical and human use				

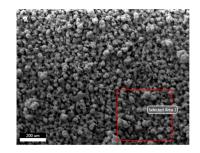
Nuclear Reactions

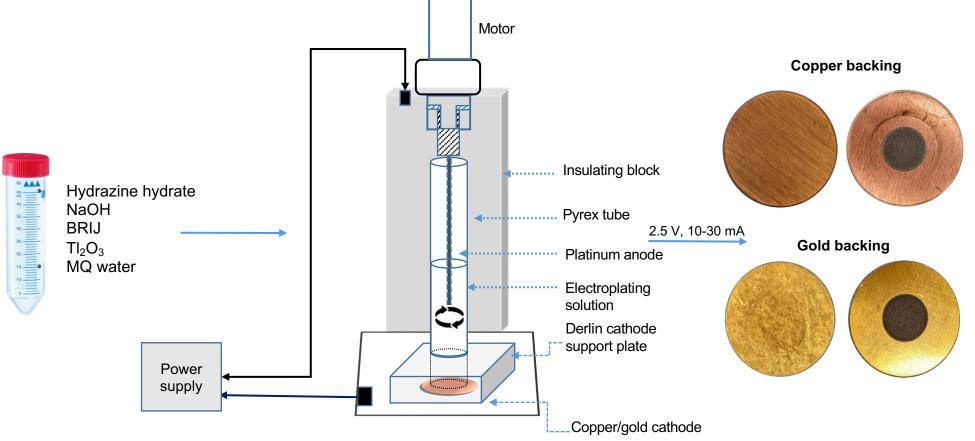
Neutron (n) #

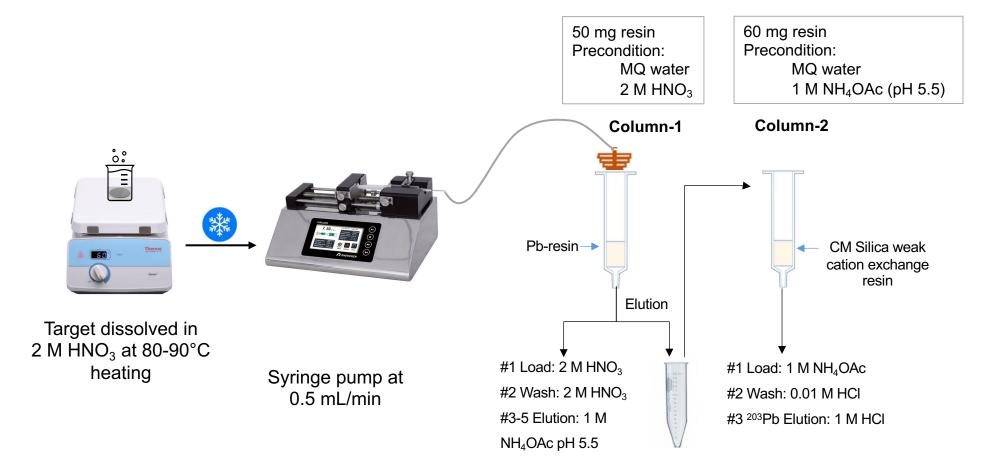
Nuclear Reactions of Proton Irradiation for ²⁰³Pb from ^{nat}Tl vs enriched ²⁰⁵Tl materical

Azzam A. et al." *Applied Radiation and Isotopes* 91 (2014): 109-113 Hermanne, Alex et al." *Nuclear Data for Science and Technology*. Springer, Berlin, Heidelberg, 1992.



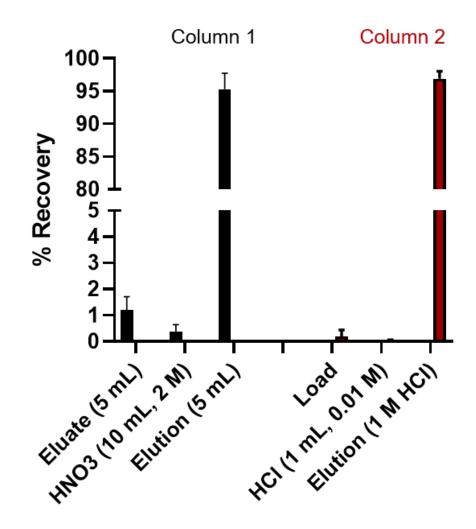

Electroplating set-up for target preparation


Shefali Saini

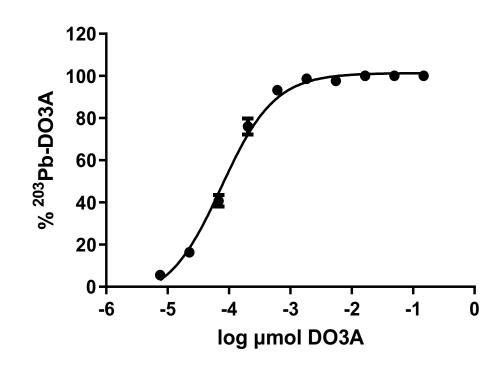


 $76-114 \text{ mg/cm}^2 \text{ (n = 16)}$

Electroplating method adapted from Suparman, Ibon. et al. No. INIS-XA--397. 2000. Electroplating setup adapted from McCarthy, Deborah W., et al. Nuc Med Biol, 24,1 (1997): 35-43. Saini, S. et al. (2023), J Nucl Med, online publication: https://doi.org/10.2967/jnumed.123.265976


Purification

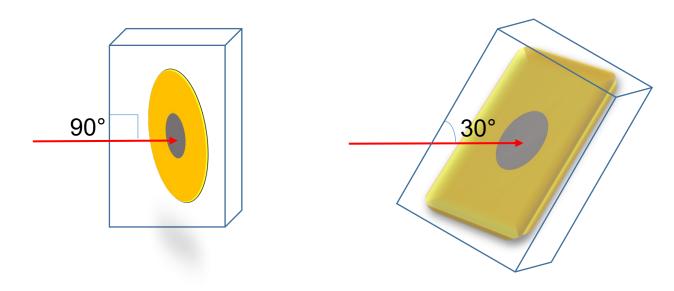
Adapted from: McNeil, Brooke L., et al. EJNMMI radiopharmacy and chemistry, 6,1 (2021): 1-18. Saini, S. et al. (2023), J Nucl Med, online publication: https://doi.org/10.2967/jnumed.123.265976


Purification – ²⁰³Pb Elution Profile

- Elution from first column
 - → Ammonium acetate (pH 5): 5 mL
- Elution from second column
 - \rightarrow 1 M HCI: 0.4 mL
- Average recovery yields: 93 ± 3 %

Molar activity measurements

- DO3A chelator
- Starting 10 mg/mL stock
- Concentration range between 1-200 nmol
- 3.7 MBq [²⁰³Pb]PbCl₂
- Incubation at 37°C for 30 min
- iTLC-SG using 50 mM EDTA as mobile phase

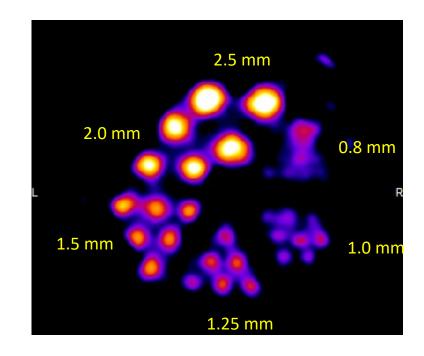


Average apparent molar activity: ~37.68 ± 5.36 GBq/µmol

ICP-MS Analysis of Final ²⁰³Pb Product

#	Backing	Target	Fe	Cu	Zn	TI	Pb
1.	Copper	²⁰⁵ TI	0.01 ± 0.01	0.40 ± 0.48	0.09 ± 0.05	0.22 ± 0.38	0.16 ± 0.06
2.	Gold	²⁰⁵ TI	0.01 ± 0.00	0.01 ± 0.01	0.19 ± 0.08	below LOD	0.20 ± 0.08

Preliminary results for 30° slant target design



	Target type-1	Target type-2				
24 MeV and 3-hour irradiation for 100 mg target						
Beam currentProduction yieldsBatch sizeAMA (using DO3A)	~40 µA 3.7 GBq 9.25 GBq/mL ~37 GBq/µmol	~80 µA 7.4 GBq 18 GBq/mL ~66 GBq/µmol				

*Decay corrected to EOB

Summary and future directions

- Targetry
 - → Electroplating method yields promising results
 - Successful target irradiation at 24 MeV and up to 80 μA on the 30° target design without any damage to the target
- Separation method
 - → Separation of ²⁰³Pb from ²⁰⁵Tl target material was successfully achieved with robust recovery
- Successfully transitioned the production to the Cyclotron Facility team
 - → Semi-automated separation method in progress
- Ongoing work for recycling ²⁰⁵TI

Current production status

- Shipping around US and Internationally
- Batch sizes up to 7.4 GBq (200 mCi) in < 500 μL 1 M HCl
- Shipments available nearly every week on Tuesday for Wednesday arrival (US)

Oct-23	Nov-23	Dec-23		
10, 17, 24, 31	14, 28	12, 19		

Jan-24	Feb-24	Mar-24	Apr-24	May-24	Jun-24	Jul-24	Aug-24	Sep-24
16, 23, 30	13, 20, 27	12, 19, 26	2, 16, 23, 30	14, 21, 28	18, 25	9, 16, 23, 30	13, 20, 27	10, 17, 24

To purchase ²⁰³Pb or any other DOE isotope we provide - ⁴⁸V, ⁵²Mn, ⁵⁵Co - place orders through <u>www.isotopes.gov</u>.

Acknowledgements

<u>UAB</u>

- Suzanne Lapi, PhD
- Shefali Saini
- Jean-Pierre Appiah
- Jason Rider

Collaborators

 Viewpoint Molecular Targeting (now Perspective therapeutics): Michael Schultz and Nicholas Baumhover

The UAB Cyclotron Facility is a member of the Department of Energy University Isotope Network and is supported through DESC0021269 (PI: Lapi).

Thank you!