# Astatine-211 Production Activities at the University of Washington

#### 2023 DOE IP VIRTUAL SEMINAR SERIES - ASTATINE-211

YAWEN LI 10/03/2023





## **TOPICS COVERED**

- Properties that make <sup>211</sup>At attractive for targeted alpha therapy
- 2. Methods used for routine production
- 3. QA/QC and product specifications
- 4. Current development activities



# **ASTATINE-211 FOR TAT**

- High energy alpha decay: short range in tissue, deliver a high radiation dose to tumor while sparing surrounding healthy tissue
- Short half-life: potentially lower toxicity
- No alpha-emitting daughter nuclide: less off-target toxicity
- Easy production: medium energy alpha beam; low-cost target material
- Targeted delivery: established radiolabeling chemistry for incorporating <sup>211</sup>At into various carrier molecules



# **10-DEGREE TARGET AND TARGET STATION**



Bi target

<sup>211</sup>At production target station

- Developed in collaboration with TRIUMF, Vancouver, Canada
- Irradiated at a 10° slant
- High purity Bi melted onto Al target body, machined to desired thickness
- Large Bi surface: 120 mm x 18 mm
- Fully stopping: ~4.25 g of Bi



K. Gagnon, et al., J. Label Compd. Radiopharm, 2012, 55 436-440

# **"WET CHEMISTRY" ISOLATION METHOD**



1. Bi/<sup>211</sup>At is dissolved in conc. HNO<sub>3</sub>



2. HNO<sub>3</sub> is distilled away, leaving Bi salts containing <sup>211</sup>At



3. Bi/<sup>211</sup>At salts are dissolved in 8 M HCl



4. <sup>211</sup>At is extracted into DIPE (top layer)



5. Aqueous layer (bottom - HCI) is removed and discarded

- 6. Wash the DIPE/211At layer 4 times with 8 M HCl
- 7. <sup>211</sup>At is back-extracted into NaOH (~0.5 mL)

8. The NaOH is neutralized (pH 6.5-7.0) and <sup>211</sup>At is ready to be used for antibody labeling

#### Run time: 2.5 hours

Non-decay corrected yield: ~60%

E.R. Balkin et al., Applied Sciences, 3, 636-655.



**UW** Medicine

# QA/QC

| Characteristic                                               | Test Method                                            | Acceptance Criteria                                                                                                             |
|--------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Identity                                                     | Radio-TLC                                              | Conforms to reference<br>TLC scan                                                                                               |
| Chromatographic Purity<br>Using Gamma-Detection              | Radio-TLC                                              | ≥85% (area %) Na[ <sup>211</sup> At]At Other <sup>211</sup> At<br>species may be present (e.g.<br>[ <sup>211</sup> At]astatate) |
| Radionuclide<br>Purity (test for other<br>nuclides present)* | HPGe purity validation<br>of 4 separate At-211<br>runs | >99+%; Evaluated quarterly<br>(no At-210 or other radionuclide<br>detectable)                                                   |

\*Test is run quarterly as results do not change during shorter testing periods



## **YEARLY ASTATINE-211 PRODUCTION**



- More than 2 Ci of <sup>211</sup>At produced in each year over the last five years.
- The total activity of 2023 is expected to be lower due to a pause in multiple clinical trials due to FDA review of the current results.





# **PRODUCT INFORMATION**

- Quotes & Orders: isotopes.gov
- Batch size:
  - Activity at shipment 0.518 GBq or 1.85 GBq (14 mCi or 50 mCi)
  - After overnight shipment, ~10% of shipped quantity at receipt due to half-life
- Frequency: once per week with potential for additional runs depending on our schedule
- Shipped in near neutral solution (~pH 6.5-7.0)
- Container: plastic V-bottom vial
- Volume: <1 mL
- FedEx Overnight Shipping is used
- Local courier can be arranged if within driving distance from Seattle, WA



# **90-DEGREE ASTATINE-211 TARGET STATION**



#### **Design criteria**

- <sup>211</sup>At targets to 100 µA of 29 MeV alpha beam
- Automatic target loading and ejection
- Compatible with commercial remote target transport systems
- Adaptable for other isotope production targets
- Cost effective to fabricate and maintain

For questions, please contact Marissa Kranz via kranzm@uwmcf.uw.edu

UW Medicine UW SCHOOL OF MEDICINE DEPARTMENT OF RADIATION ONCOLOGY

## AUTOMATED TARGET LOADING AND UNLOADING





# **TELLURIUM-PACKED COLUMN METHOD**

- Eliminated the nitric acid distillation step
- Hydroxylamine hydrochloride is used to destroy the nitrate
- Final product contains tellurium impurity (i.e. Na<sub>2</sub>TeO<sub>3</sub>) ~20-50 ppm
- Might have residual hydroxylamine hydrochloride in the final product

- Decay and attenuation corrected isolation yields: >95%
- Non-decay corrected yield: <u>~90%</u>
- Semi-automated process takes ~<u>1.5 h</u>
- Final product in ~1 mL NaOH
- Radiochemical purity >99%
- Antibody radiolabeling yields: 70-80%



Li, Y., Hamlin, D.K., Chyan, M. et al. Sci Rep 9, 16960(2019).

**UW** Medicine

# **OPTIMIZATION OF AUTOMATED ISOLATION**



- Minimize product volume
- Flushing the Te column with air
  - $\circ~$  Most of the activity in <0.5 mL
  - $\circ$  Affected radiolabeling yields
- Will evaluate Ar for removing water from column and tubing
- Adapting this method for the 90-degree target



#### **COIN-SHAPED BISMUTH TARGET**



UW SCHOOL OF MEDICINE DEPARTMENT OF

- About 90 µm thick designed to capture 29 – 21 MeV of the excitation function for <sup>211</sup>At
- 18 mm diameter; 230 mg of Bi 6% of the 10-degree target – potentially simplify the separation chemistry
- 30 <sup>211</sup>At production runs to date
- 15 30 mCi for preclinical animal studies
- Ramping up beam current
- Production rate comparable to the 10degree target
- 30 min wait time after EOB due to shortlived radioisotopes in the AI target backing

#### **TARGET DISSOLUTION CHAMBER**



#### UW Medicine UW SCHOOL OF MEDICINE DEPARTMENT OF RADIATION ONCOLOGY

Designed and fabricated by Bob Smith

## SUMMARY

- Routinely produce up to 2 Ci of <sup>211</sup>At per year
- Evaluating new target system for production
- Optimizing a new automated process for isolation



## **THANK YOU !**

This research is supported by the U.S. Department of Energy Isotope Program, managed by the Office of Science for Isotope R&D and Production.





