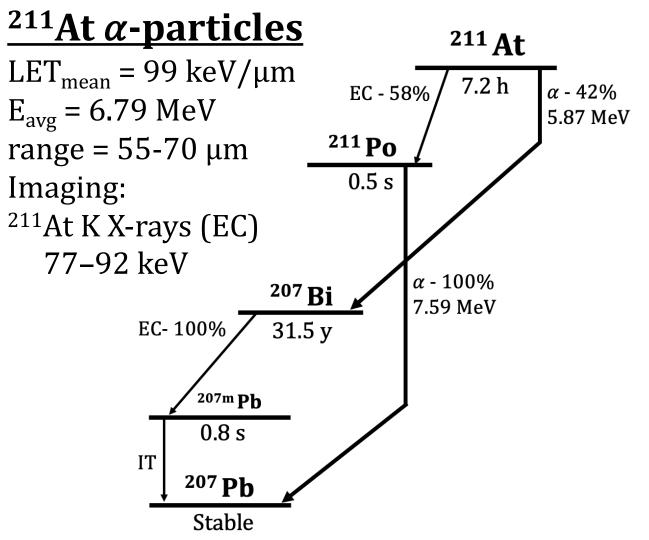


Development of ²¹¹At:

Understanding its chemical behavior


Jonathan D. Burns Department of Chemistry Department of Radiology

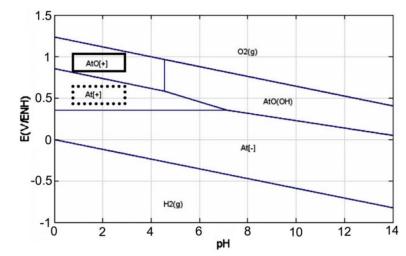
DOE Isotope Program Virtual Seminar Series – At-211, October 3, 2023 Virtual

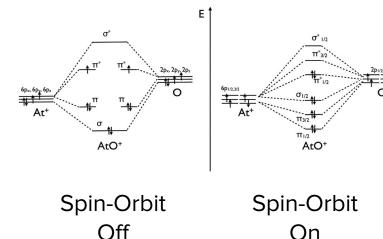
²¹¹At Background

					18
					He
13	14	15	16	17	Helium 4.003
5	6	7	8	9	10
B		Ν		F	Ne
Boron 10.81	Carbon 12.01	Nitrogen 14.01	Oxygen 16.00	Fluorine 19.00	Neon 20.18
13	14	15	16	17	18
	Si	P	S		Ar
Aluminium 26.98	Silicon 28.09	Phosphorus 30.97	Sulfur 32.06	Chlorine 35.45	Argon 39.95
31	32	33	34	35	36
Ga	Ge	As	Se	Br	Kr
Gallium 69.72	Germanium 72.64	Arsenic 74.92	Selenium 78.96	Bromine 79.90	Krypton 83.79
49	50	51	52	53	54
In	Sn	Sb	Te		Xe
Indium 114.8	Tin 118.7	Antimony 121.8	Tellurium 127.6	lodine 126.9	Xenon 131.3
81	82	83	84	85	86
TI	Pb	Bi	Po	At	Rn
Thallium 204.38	Lead 207.2	Bismuth 209.0	Polonium (209)	Astatine (210)	Radon (222)
113	114	115	116	117	118
Nh	FI	Mc		Ts	Og
Nihonium (284)	Flerovium (289)	Moscovium (288)	Livermorium (293)	Tennessine (294)	Oganesson (294)

https://www.acs.org/content/acs/en/education/whatischemistry/periodictable.html (accessed 4/19/22)

Adapted from Zalutsky, M. and Pruszynski M. Curr. Radiopharm. 2008, 1, 177–196.


Department of Chemistry, College of Arts and Sciences


²¹¹At Chemistry in HNO₃

Determination of stability constants between complexing agents and At(I) and At(III) species present at ultra-trace concentrations

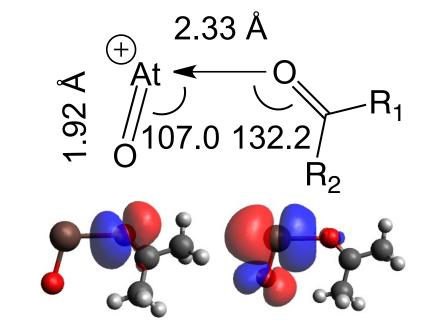
J. Champion^a, C. Alliot^b, S. Huclier^a, D. Deniaud^c, Z. Asfari^d, G. Montavon^{a,*}

evanescent AtO⁺ ion[†]

Renzo Cimiraglia^c and Valérie Vallet^a

Electronic structure investigation of the

André Severo Pereira Gomes,*ª Florent Réal,ª Nicolas Galland,^b Celestino Angeli,⁶


ChemComm

COMMUNICATION

	Check for	update	3
Cite tl 56, 90	his: Chem. C 104	ommun.,	2020,
	ved 29th May ted 20th Jur		
DOI: 1	.0.1039/d0cc	:03804k	

Astatine partitioning between nitric acid and conventional solvents: indication of covalency in ketone complexation of AtO⁺[†]

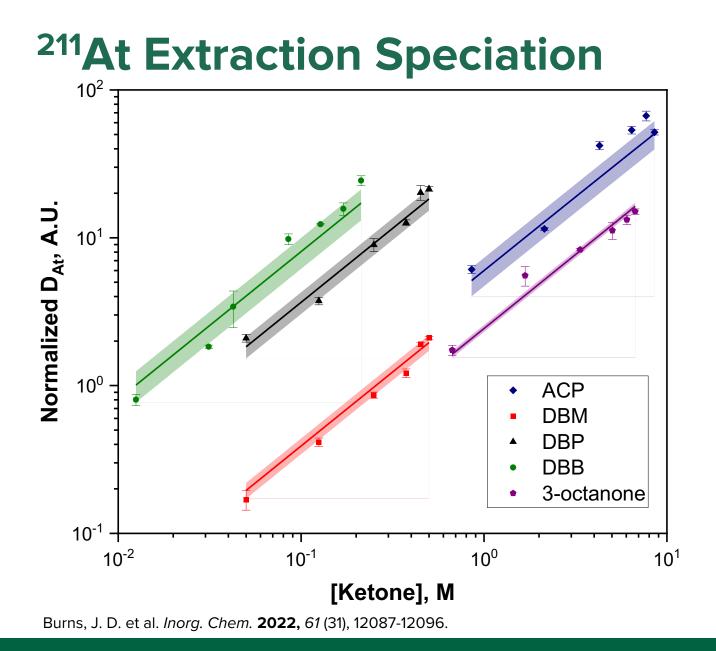
Jonathan D. Burns, 💿 +ª Evgeny E. Tereshatov, 💿 ^D Mallory A. McCarthy,^{bc} Lauren A. McIntosh, 💿 ^b Gabriel C. Tabacaru,^b Xin Yang, 💿 ^c Michael B. Hall 🔞 ^c and Sherry J. Yennello 🗊 ^{bc}

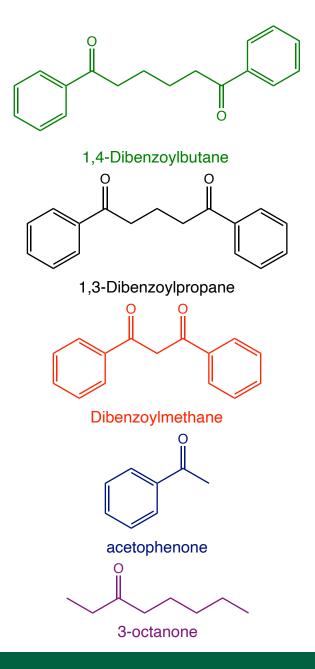
Champion, J. et al. Inorganica Chim. Acta 2009, 362 (8), 2654-2661. Severo Pereira Gomes, A. et al. Phys. Chem. Chem. Phys. 2014, 16, 9238-9248.

PCCP

PAPER

Cite this: Phys. Chem. Chem. Phys. 2014. 16, 9238

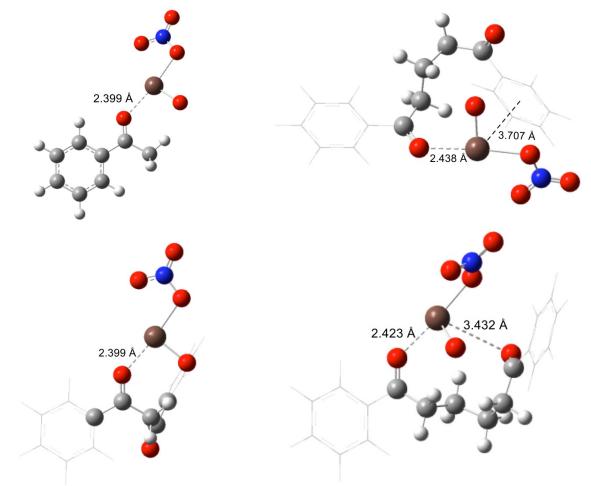

Burns, J. D. et al. Chem. Commun. 2020, 56 (63), 9004.


3

ROYAL SOCIETY OF **CHEMISTRY**

CALABAMA AT BIRMINGHAM

Department of Chemistry, College of Arts and Sciences

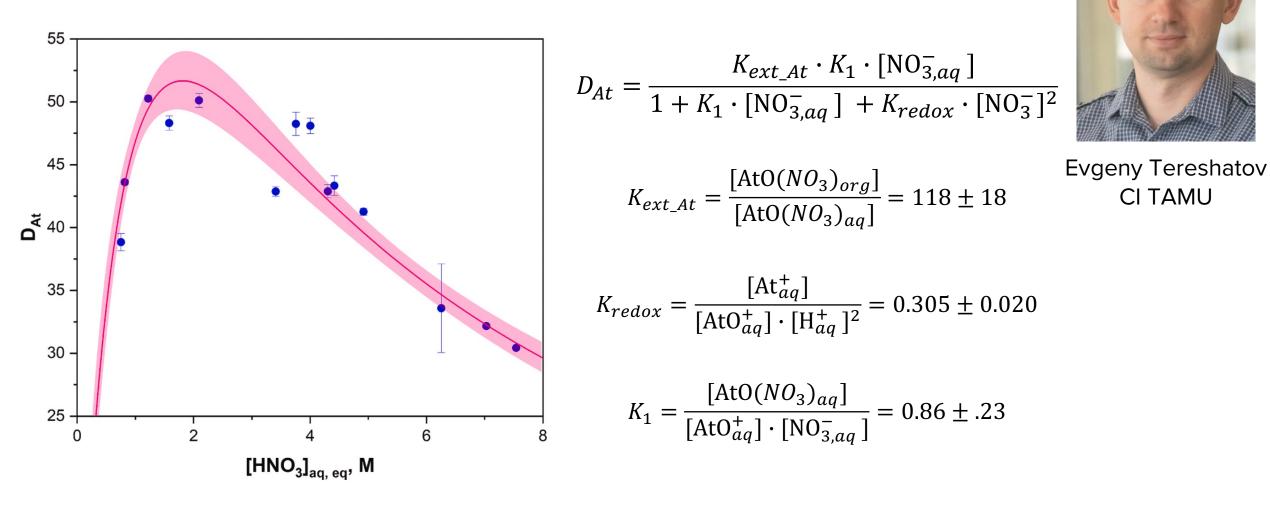


Department of Chemistry, College of Arts and Sciences

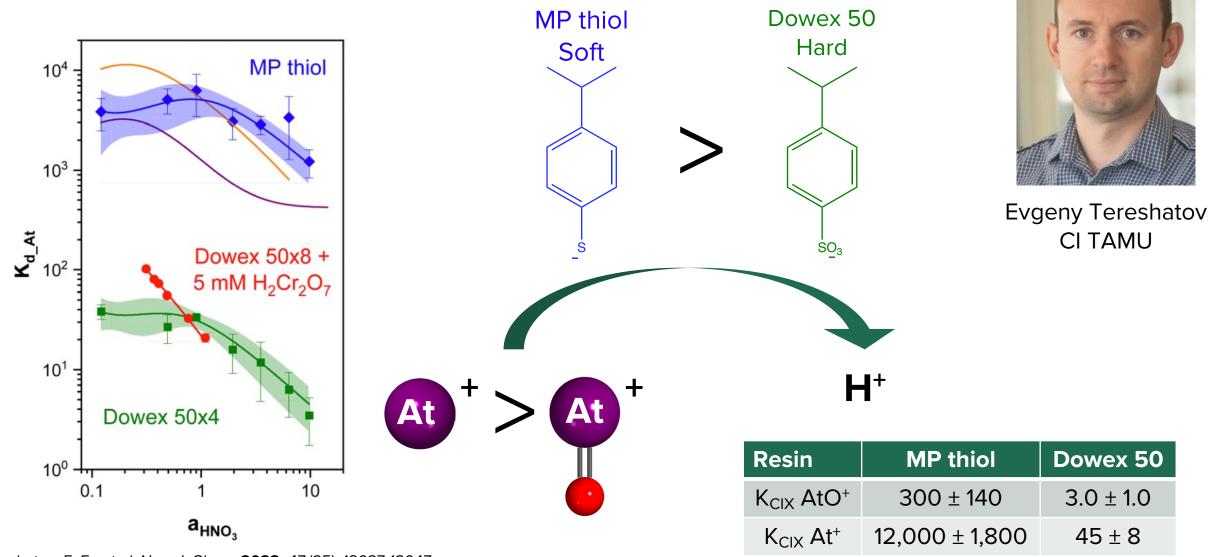
4

²¹¹At Extraction Speciation Cont.

Bidentate

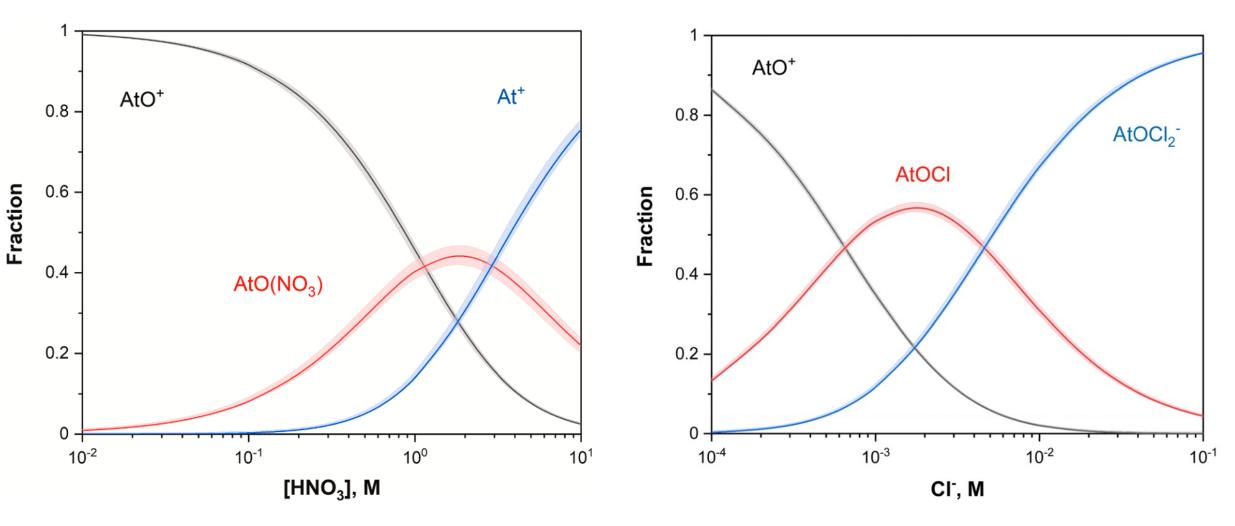

Solvent	Mode	∆G(sol) / kcal∙mol ⁻¹	E _d / kcal•mol ⁻¹
3-octanone	Mono	-11.91	4.21
acetophenone	Mono	-13.56	1.00
dibenzoylmethane	Mono	-12.06	3.23
1,3-dibenzoylpropane	Mono	-15.58	0.71
	Bi O O	-11.27	4.29
	Bi O phenyl	-14.32	7.99
1,4-dibenzoylbutane	Mono	-11.58	3.20
	BiOO	-19.04	4.52
	Bi O phenyl	-17.86	4.39

Monodentate


5

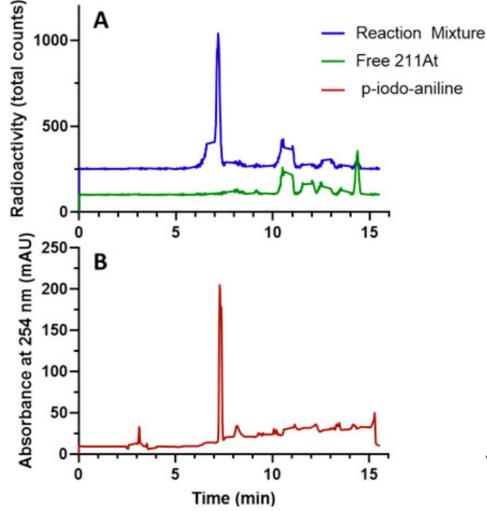
²¹¹At Extraction from HNO₃ to 1-octanol

Tereshatov, E. E.; et al. Sep. Purif. Technol. 2022, 282, 120088.


²¹¹At Ion Exchange Behavior

Tereshatov, E. E.; et al. New J. Chem. 2023, 47 (25), 12037-12047.

²¹¹At Speciation Diagrams

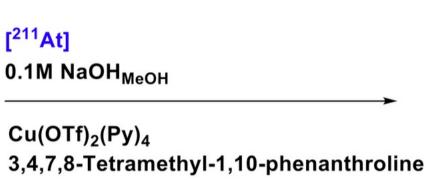


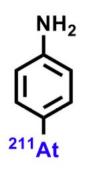
Tereshatov, E. E.; et al. Sep. Purif. Technol. 2022, 282, 120088.

Tereshatov, E. E.; et al. New J. Chem. 2023, 47 (25), 12037-12047.

8

Aniline Labeling with ²¹¹At




Labeling Yield (non-decay corrected) 36 ± 22% (n = 4)

10min at RT

Riccardo Muzzioli UTMDACC

(2)

McIntosh, L.A.; et al. Nucl. Med. Biol. 2023, in press

Future Work with At-211

- Investigate the At preference for ketone functionality more thoroughly
 - Electron donor groups on the hydrocarbon backbone
 - Electron withdrawing groups on the hydrocarbon backbone
- Expand fundamental understanding of binding affinity of At with N, S, and P groups
- Explore the chemical behavior of At post shipment

Collaborating with Texas A&M University on ²¹¹At

Participated in a production run in June 2022

11

Received first shipment of At-211 October 2022

Acknowledgements

Postdocs:

Jennifer Pyles

Avinash Srivastava

<u>Graduate Students</u>:

Noimat Jinadu

Ataur Rahman

Jehan Perera


Imansha Madhushan

Collaborators:

Sherry Yennello and ²¹¹At Team (TAMU) HIPPO Collaboration Laetitia Delmau (ORNL) Jeffrey Einkauf (ORNL) Luke Sadergaski (ORNL) Bruce Moyer (ORNL)

Funding:

DOE Isotope Program ECR DE-SC0024600 DOE ARPA-E CURIE DE-AR0001689 DOE Isotope Program HIPPO DE-SC0022550 DOE Isotope Program UAB UIN DE-SC0021269

CHANGING WHAT'S POSSIBLE

Isotope Program

U.S. Department of Energy

Department of Chemistry, College of Arts and Sciences

Thank You for Your Attention!

Question?

burnsjon@uab.edu