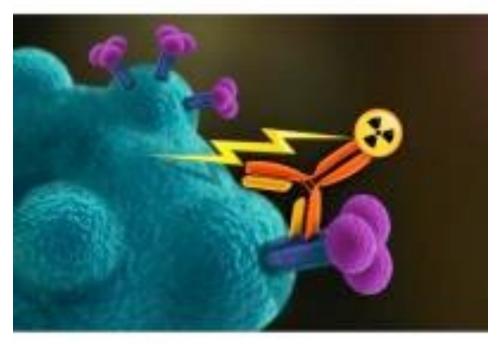

Cerium 134 as an imaging surrogate for ²²⁵Ac

This research is supported by the U.S. Department of Energy Isotope Program, managed by the Office of Science.

Mackenzie Malo, MSc & Kevin Allen, PhD September 19th, 2022 Cerium-134 DOE Users Meeting

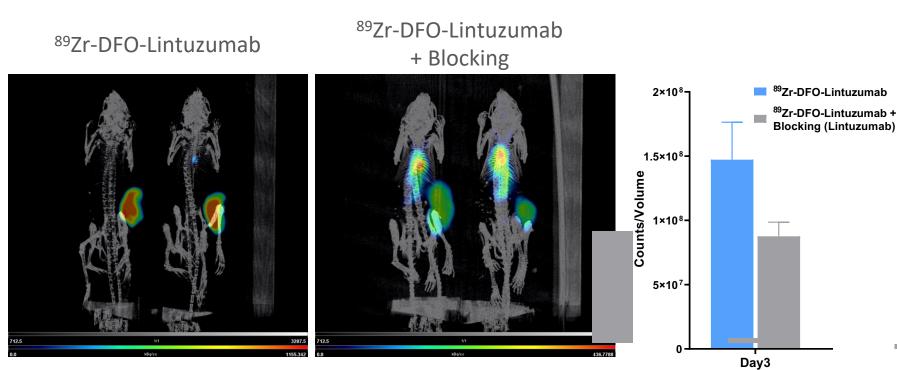


Radioimmunotherapy (RIT)

Tumor specific antibodies direct radionuclides to cancer cells

RIT limits the dose to normal tissues

Actinium-225



- Actimab-A[®] ²²⁵Ac labeled Lintuzumab in phase 1/2 clinical trials. Targets CD33 in patients with relapse/refractory acute myeloid leukemia (AML)
- Positron Emission Tomography (PET) imaging improve preclinical evaluation of Ab-radiometal conjugates
- No available PET-enabling radiometals available that match the ²²⁵Ac half-life (⁸⁶Y half-life, 15h, is too short to approximate ²²⁵Ac)
- Best option so far has been ⁸⁹Zr or ¹¹¹In SPECT

89Zr-DFO-Lintuzumab

150 μCi ⁸⁹Zr-DFO-Lintuzumab in CD33-positive OCI-AML-3 tumors

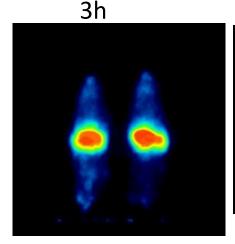
www.usask.ca

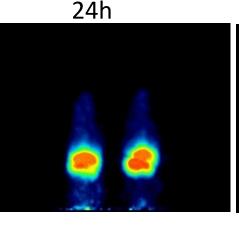
Potential of ¹³⁴Ce

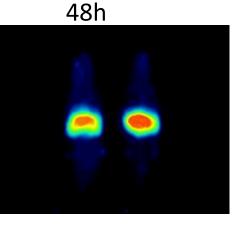
- Improved image quality, shorter imaging protocols over SPECT
- Able to use DOTA
- Longer half-life than other available PETradiometals

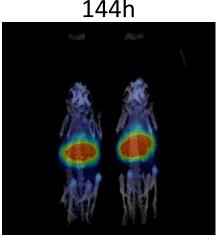
Labeling results

- Initial attempts at 37 °C were unsuccessful at both 1:1 & 5:1 μCi:μg
- Increasing to 50 °C provided near quantitative yield at 1:1 μ Ci: μ g with limited success at 5:1 likely resulted in some lose of bioreactivity
- Attempts at 42 °C were successful for 1:1 μCi:μg


Antibody	Temperature (°C)	Specific activity (μCi:μg)	Yield (%)
A-DOTA	37	1:1	7
A-DOTA	37	5:1	3
A-DOTA	50	1:1	85
B-DOTA	37	1:1	5
B-DOTA	42	1:1	99
B-DOTA	42	5:1	21
B-DOTA	50	1:1	99
B-DOTA	50	5:1	24


wwww.usask.ca




Imaging results

- Labeling was performed at 50 °C with a 1:1 μCi:μg specific activity.
- 134Ce solution pH was adjusted to 7 using 5M ammonium acetate (chelexed).
- iTLC showed near quantitative labeling, however the sample was purified via spin.
 filtration to maintain constancy with established protocol and ensure highest levels of purity
- 81 μCi (3MBq) of labeled antibody was injected into each mouse.

Conclusions

- Labeling is possible at lower activity to antibody ratio.
- Temperature plays a factor in labeling effectiveness, the effect this has on antibodies will be specific to your own antibody
- PET images are readily acquired.
- Longer half-life enables longer labeling times and provide ample opportunity to collect data over multiple days.
- Can act as an imaging surrogate for Ac225

Acknowledgements:

Group members Supervisor

Connor Frank

Dr. Kate Dadachova

Dr. Rubin Jiao

Sabeena Giri

Chandra Bose Prabaharan

Dr. Jorge Costa Carvalho

Zhiwen Xiao

Michelle Vargas Fernandez

This research is supported by the U.S. Department of Energy Isotope Program, managed by the Office of Science.

Actinium Pharmaceuticals, Inc.

