Astatine-211 DOE Isotope User Group Meeting 2022

Yawen Li, Ph.D.

Department of Radiation Oncology

School of Medicine | University of Washington
<table>
<thead>
<tr>
<th>Time</th>
<th>Speaker</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:00 – 1:15 PM (ET)</td>
<td>Yawen Li, University of Washington</td>
<td>- Introduction</td>
</tr>
<tr>
<td>1:15 – 1:30 PM (ET)</td>
<td>Rob Emery, University of Washington</td>
<td></td>
</tr>
<tr>
<td>1:30 – 1:45 PM (ET)</td>
<td>Lauren McIntosh, Texas A&M University</td>
<td></td>
</tr>
<tr>
<td>1:45 – 2:00 PM (ET)</td>
<td>Robert Mach, University of Pennsylvania</td>
<td></td>
</tr>
<tr>
<td>2:00 – 2:15 PM (ET)</td>
<td>Brenda Sandmaier, Fred Hutchinson Cancer</td>
<td>Center/University of Washington</td>
</tr>
<tr>
<td></td>
<td>Corporation</td>
<td></td>
</tr>
<tr>
<td>2:15 – 2:30 PM (ET)</td>
<td>David Eve, Ionetix Corporation</td>
<td></td>
</tr>
<tr>
<td>2:30 – 3:00 PM (ET)</td>
<td>Moderated Q&A</td>
<td></td>
</tr>
</tbody>
</table>
At-211 Production and Research in the U.S.

• Interest in At-211 is increasing in U.S. but significant hurdles (including cost) must be overcome to work with it

• No country-wide effort for At-211 basic chemistry or radiopharmaceutical development

• U.S. Department of Energy Isotope Program is providing funding to increase availability of At-211 – generally no biological studies allowed under that funding

• U.S. NIH provides funding focused on disease treatment – use current methods of labeling – difficult to look at basic chemistry

• There is increasing interest by companies, but some want to see clinical responses before they will invest – no concern about adequate production
At-211 On-going Clinical Trials in the U.S.

• University of Washington and Fred Hutch (Seattle, USA) – three ongoing Phase I/II clinical trials - Recruiting
 - High-risk patients with leukemia, myelodysplastic syndrome (NCT03128034 – HLA matched; NCT03670966 - Haplo)
 - Non-malignant diseases with transplant (NCT04083183)
 - Low toxicity HCT conditioning regimen
 - 211At-labeled anti-CD45 MAb conjugate $[^{211} \text{At}] \text{BC8-B10}$
 - Intravenously injected
 - Treated 59 patients as of August 2022

• University of Washington and Fred Hutch (Seattle, USA) – two new Phase I clinical trials
 - Plasma Cell Myeloma; (NCT04466475 - recruiting)
 - RIT + melphalan + transplant
 - High Risk Multiple Myeloma; (NCT04083183 – not yet recruiting)
 - Plasma Cell Myeloma/Recurrent Plasma Cell Myeloma
 - RIT + cyclophosphamide w/wo fludarabine + TBI + transplant
 - 211At-labeled anti-CD38 MAb conjugate $[^{211} \text{At}] \text{OKT10-B10}$
 - Intravenously injected
 - Estimated total enrollment of 54 patients (for both trials)
On-going and Planned At-211 Clinical Trials in Japan and Europe

- **Osaka University (Suita, Japan) – NCT05275946, Phase I, Recruiting**
 - Thyroid Cancer
 - 211At]NaAt
 - Intravenously injected
 - Estimated Enrollment: 11 patients

- **Fukushima Medical University, Fukushima, Japan** - Phase I trial (not posted on Clinicaltrials.gov)
 - Neuroblastomas
 - 211At]meta-astatobenzylguanidine, 211At]MABG

- **Gothenburg, Sweden – NCT04461457, Phase I, Completed in 2012**
 - Ovarian Cancer
 - 211At-labeled MX35 (Fab)$_2$ antibody fragment, targeting NaPi2b
 - Up to 215 MBq/L, or 5.8 mCi/L was administered into the intraperitoneal cavity
 - Treated 12 patients
 - No signs of radiation-related toxicity
 - No decreased tolerance to relapse therapy
 - Planning for Phase II
At-211 Production at UW

- $^{209}\text{Bi}(\alpha,2n)^{211}\text{At}$ nuclear reaction
- External target:
 - Developed in collaboration with TRIUMF, Vancouver, Canada
 - Irradiated at a 10° slant
 - High purity Bi melted onto Al target body, machined to desired thickness
 - Large Bi surface: 120 mm x 18 mm
 - Fully stopping: ~4.25 g of Bi
- 50 µA produces ~26 mCi (0.96 GBq) in 45 min
- 4-5 hour runs for clinical studies to produce 130-150 mCi (4.81 – 5.55 GBq)
- No ^{210}At is observed in the product using 29 MeV alpha beam

New At-211 Target and Target Station

- Led by UW Medical Cyclotron Team (Rob Emery and Bob Smith)
- The design is available for DOE University Isotope Network to use

New target and target holder designed to

- Withstand 100 μA of 29 MeV α
- Be compatible with commercial remote retrieval system
- Contain target housing materials that do not interfere with chemical processing
- Minimize target housing activity for safe handling and minimize long lived rad waste

Target station designed to have

- Ability to remotely load, irradiate, and retrieve targets
- Ability to transfer irradiated targets into shielded pigs or pneumatic target transfer systems connected to hot cells
- Ability to accommodate target material in various forms (e.g. foils, powders, crystals, melted, sputtered or plated material, etc)
“Wet Chemistry” Isolation Method

1. Bi/\(^{211}\)At is dissolved in conc. HNO\(_3\)

2. HNO\(_3\) is distilled away, leaving Bi salts containing \(^{211}\)At

3. Bi/\(^{211}\)At salts are dissolved in 8 M HCl

4. \(^{211}\)At is extracted into DIPE (top layer)

5. Aqueous layer (bottom - HCl) is removed and discarded

6. Wash the DIPE/\(^{211}\)At layer 4 times with 8 M HCl

7. \(^{211}\)At is back-extracted into NaOH and transferred to a conical vial

8. The NaOH is neutralized (pH 6.5-7.0) and \(^{211}\)At is ready to be used for antibody labeling

Run time: 2.5 hours

Non-decay corrected yield: ~60%

Production for the NIDC

- **Quotes & Orders: isotopes.gov**
- **Batch size:**
 - Activity at shipment - 0.518 GBq or 1.85 GBq (14 mCi or 50 mCi)
 - After overnight shipment, ~10% of shipped quantity at receipt due to half-life
- Shipped in near neutral solution (~pH 6.5-7.0)
- Container: plastic V-bottom vial
- Volume: <1 mL
- FedEx Overnight Shipping is used
- Local courier can be arranged if within driving distance from Seattle, WA
Semi-automated Te-packed Column method

1. Pump 15 mL 10 M HNO₃ through the in-line dissolution chamber to dissolve the irradiated Bi target

2. Push air through the fluid path

3. Rinse syringe with D.I. H₂O

4. Add 35% NH₂OH·HCl to the ²¹¹At/Bi mixture to reduce nitrate concentration

5. Adjust the solution to 1.5 M HCl by adding 8 M HCl

6. Pre-equilibrate the Te column with 1.5 M HCl

7. Transfer 21.5 mL of the prepared ²¹¹At/Bi mixture into a 25 mL loop

8. Load the ²¹¹At/Bi mixture onto the column at a high flow rate of 6 mL/min

9. Wash the column with 20 mL 1.5 M HCl, followed by 20 mL of D.I. H₂O

10. Elute ²¹¹At in 1 mL 1 N NaOH

Repeat multiple times to load all the activity
Te-packed Column Method

• Eliminated the nitric acid distillation step and shortened the overall run time

• Final product contains Te impurity (i.e. Na₂TeO₃) ~20-50 ppm

• Might have breakthrough NH₂OH·HCl in the final product

• Semi-automated isolation process takes ~1.5 hours

• Non-decay corrected yield: ~90%

• Radiochemical purity > 99%

• Volume of the final product: 1 mL of 1 M NaOH
At-211 Obtained Using Te Column Isolation Method

- ^{211}At obtained using the semi-automated Te column method is suitable for labeling of isothiocyanato-phenethyl-closo-decaborate, or B10-NCS conjugated antibodies without added oxidant, providing labeling yields of 70-80%.

- The quantities of reagents have been optimized to prevent NH$_2$OH·HCl breakthrough.

- A HPLC method using ninhydrin for NH$_2$OH detection is being evaluated.

- Preliminary results suggest the detection limit is lower than 0.05 μg, well below the level known to have any toxicity effect1,2

2. Paul Gross and Roger Smith, CRC Critical Reviews in Toxicology, 14:1, 87-99
Yearly At-211 Production at UW

- Produced and used on average 2.2 Ci (81.4 GBq) 211At per year in the last four years
- ~90 mCi (4%) to other U.S. investigators through the National Isotope Development Center (NIDC)
- ~440 mCi (20%) for chemistry and preclinical studies at the UW and the Fred Hutchinson Cancer Center (FHCC)
- ~1.7 Ci (76%) for three on-going clinical trials evaluating 211At-labeled anti-CD45 antibody BC8
Research Collaborators

- P.I. Collaborators at the Fred Hutch Cancer Center

Rainer Storb, M.D.

Brenda Sandmaier, M.D.

Ollie Press, M.D., Ph.D.
(deceased)

Damian Green, M.D.

Johnnie Orozco, M.D., Ph.D.

Roland Walter, M.D., Ph.D.

Hans-Peter Kiem, M.D., Ph.D.

Geoffrey Hill, M.D.

Phuong Vo, M.D.

Seth Pincus, M.D.
(now MSU)

Bob Harrington, M.D.

James Park, M.D.

PI Collab.
at UW
Fred Hutch / UW At-211 Collaborations

- Non-myeloablative stem cell transplantation
- Cell and gene therapy for nonmalignant blood disorders
- Latent HIV infected cells
- Radioimmunotherapy for lymphoma and leukemias (targeting CD20, CD45, CD33, CD123, CD117)
- Radioimmunotherapy for multiple myeloma (targeting CD38)
- RIT to study graft-vs-host disease
- Radioimmunotherapy with other novel agents for multiple myeloma
- Radioimmunotherapy to treat hepatocellular carcinoma
Our Team

UW Medicine
Radiochemistry Division

From left to right:
• Roger Wong, Research Scientist
• Donald Hamlin, Research Scientist
• Yawen Li, Assistant Professor
• D. Scott Wilbur, Professor Emeritus
• Sean Tanzey, Postdoctoral Fellow
• Ming-Kuan Chyan, Research Scientist

Thank you for your attention!