[^{203/212}Pb]VMT-α-NET Theranostic Pair Achieved Complete Response in SSTR2+ Preclinical Tumor Model

A Path from Bench \rightarrow Bed

Dijie Liu, DVM, Ph.D 2022 Lead-212 User Group Meeting 10/04/2022

Disclosure

• Employed at Viewpoint Molecular Targeting Inc.

^{203/212}Pb-Based Theranostics Targeting SSTR2

Radion Target (ed+a phaa, emitter, radiotherapy

3

Binding Affinity & Cellular Uptake to SSTR2

AR42J cells are SSTR2+ and used as the model cell line.

Higher Tumor Uptake and Faster Renal Clearance of ²⁰³Pb-VMT-α-NET vs. ²⁰³Pb-DOTATOC

Tumor: SSTR2 positive AR42J

The University of Iowa

SPECT imaging Confirmed Specific SSTR2 Targeting

Comparable BioD profiles of [203Pb] vs. [212Pb]VMT- α -NET

Efficacy Study 1-Dose Escalating

- Maximum Tolerate
 Dose (MTD) was
 determined at 3.70
 MBq of [212Pb]VMT-α NET.
- Dose-response efficacy was manifested.

Efficacy Study 2- Single vs. Fractionated Doses

Serum Chemistry End of Study (Day 120)

Total protein

Creatine kinase

Renal Histopathological Observance

Mice number

Scoring:	Tubulointerstitial Inflammation	Glomeruli Injury	Tubular Injury
0- Absent	0%	0%	0%
1- Mild	1-10%	1-10%	1-10%
2- Moderate	11-25%	11-20%	11-25%
3- Severe	26-50%	21-30%	26-50%
4- Very Severe	> 50%	> 31%	> 50%
	Tubular Changes: stained bodies of various sizes, vacuolization, loss of epithelial cells nuclei, dark acidophilic cytoplasm, loss of tubular epithelial cells into tubular lumen, and acellular sections of tubules.		
	Glomerular changes: glomeruli with any degree of sclerosis or collapse and thrombonecrotic lesions.		

Efficacy Study 3-Direct Comparison

- Both single and fractionated doses regimen of [212Pb]VMT-α-NET completely inhibit tumor progression for 100 days, even with initial big tumor.
- [177Lu]DOTATATE didn't finish the planned 4th dose.

Efficacy Study 3-Direct Comparison

Both single and fractionated doses of [212Pb]VMT-α-NET demonstrated

- tolerable toxicity with continual body weight gain during the 100-day study
- 100% progression free survival

Median survival days for [177Lu]DOTATATE and vehicle were 28.5 and 10.5, respectively.

Hot Toxicity Study in male CD1-Elite

 MTD was in the window of 3.33-5.55 MBq (90-150 μCi).

The University of Iowa

Hot Toxicity Study in male CD1-Elite-Sequential CBC

- Transit CBC difference occurred at 1 week pi.
- Trend of dose-dependent reduction of RBC and HGB in long-term

22

Secured ²¹²Pb Source: VMT-α-Gen

- VMT-α-Gen for CMC for IND of [212Pb]VMT-α-NET.
- For Preclinical Research at VMT.

Summary & Updates

- VMT-α-NET demonstrated outstanding *in vitro* and *in vivo* profile targeting SSTR2.
- [203Pb]VMT-α-NET can be a reliable surrogate for imaging diagnosis and dosimetry for targeted alpha-therapy using [212Pb]VMT-α-NET.
- [212Pb]VMT-α-NET fractionated doses or single high dose (120 µCi) achieved 100% complete response to SSTR2+ tumor with tolerable toxicity in mice.
- FDA has approved the IND of [203Pb]VMT-α-NET for Phase I clinical trial in patients with SSTR2 positive tumors.
- FDA has approved the IND of [212Pb]VMT-α-NET for Phase I clinical trial in patients with SSTR2 positive tumors.
- FDA has approved Fast Track Designation of [212Pb]VMT-α-NET at VMT.

Acknowledgement

Personnel Viewpoint Molecular Target Michael K Schultz, Ph.D Mengshi Li, Ph.D Nicholas J. Baumhover, Ph Brianna Cagle, Ph.D Brenna M. Marks, BS Edwin A. Sagastume, BS Sam Rodman, Ph.D Ephraim R. Obot, MS Frances L. Johnson, MD

•

Dongyoul Lee, Ph.D, Korea Zhiming Dai, University of I Yusuf Menda, MD, Universi John Wilson, Ph.D, Universi

Stability of [²¹²Pb] and [²¹²Bi]VMT-α-NET

Representative chromatogram of fractionated HPLC collections of (A) [²¹²Pb]VMT- α -NET (B) [²¹²Bi]VMT- α -NET drug product measured via gamma counter.

^{203/212}Pb-Based Theranostics Targeting SSTR2

BioD of ²⁰³Pb-DOTAMTATE in female nude mice bearing AR42J xenograts (n=3 /time point)

BioD of ²⁰³Pb-PSC-PEG2-TOC in female nude mice bearing AR42J xenograts (n=3/time point)

BioD of [203Pb]VMT-α-NET co-injected with Lysine

Lysine co-injection reduces the renal accumulation of [203Pb]VMT-α-NET

Days post-treatment

Days post-treatment

Hot Toxicity Study 2 in male CD1-Elite

- Transit CBC difference occurred at 1 week pi.
- Dose-dependent reduction of RBC and HGB in long-term

The University of Iowa

Acknowledgement

 Personnel Viewpoint Molecular Tai Mengshi Li, Ph.D Nicholas J. Baumhover, Brianna Cagle, Ph.D Brenna M. Marks, BS Edwin A. Sagastume, B Sam Rodman, Ph.D Ephraim R. Obot, MS Frances L. Johnson, MI

Dongyoul Lee, Ph.D, K Zhiming Dai, University Yusuf Menda, MD, Univ John Wilson, Ph.D, Univ

