

Remotely-prepared ²²⁴Ra/²¹²Pb generator columns:

Process overview & recent performance evaluations

Matthew J. O'Hara,

Lucas P. Boron-Brenner

PNNL is operated by Battelle for the U.S. Department of Energy

2022 Lead-203/212 User Group Meeting, October 4, 2022

Purpose of Work

- Limited generator availability in the U.S.
 - NIDC presently supplies generators
 - Historically a manual assembly process
 - \checkmark Time & dose intensive
- Generator demand is increasing
 - Requires improved assembly efficiencies w/ decreased production team dose
- PNNL set out to develop a fully automated fluidic system to isolate ²²⁴Ra from ²²⁸Th feedstock and prepare ²²⁴Ra-loaded generator columns
 - In FY21, we set up & demonstrated the process up to ~3 mCi level
 - In FY22, we scaled up to clinically relevant levels (11-19 mCi)

6.1 MeV α (35.9%)

0.6 MeV β⁻

Part I. Automated preparation of ²¹²Pb generator

Developed the process chemistry for in-line isolation of ²²⁴Ra from ²²⁸Th, and \checkmark the remote assembly of ²²⁴Ra-loaded generator columns

- Developed the process chemistry for in-line isolation of ²²⁴Ra from ²²⁸Th, and \checkmark the remote assembly of ²²⁴Ra-loaded generator columns
- Developed three fluidic modules \checkmark
 - Module 1: ²²⁴Ra purification from ²²⁸Th
 - \checkmark In-line removal of dose contributors
 - ✓ Radionuclidically pure ²²⁴Ra
 - ✓ Recovery and reuse of ²²⁸Th

- Developed the process chemistry for in-line isolation of ²²⁴Ra from ²²⁸Th, and \checkmark the remote assembly of ²²⁴Ra-loaded generator columns
- Developed three fluidic modules \checkmark
 - Module 1: ²²⁴Ra purification from ²²⁸Th
 - \checkmark In-line removal of dose contributors
 - ✓ Radionuclidically pure ²²⁴Ra
 - ✓ Recovery and reuse of ²²⁸Th
 - Module 2: ²²⁴Ra preparation step
 - ✓ Convert ²²⁴Ra form for optimal CatIX sorption
 - ✓ Progeny-free, low-dose

- Developed the process chemistry for in-line isolation of ²²⁴Ra from ²²⁸Th, and \checkmark the remote assembly of ²²⁴Ra-loaded generator columns
- Developed three fluidic modules \checkmark
 - Module 1: ²²⁴Ra purification from ²²⁸Th
 - \checkmark In-line removal of dose contributors
 - ✓ Radionuclidically pure ²²⁴Ra
 - ✓ Recovery and reuse of ²²⁸Th
 - Module 2: ²²⁴Ra preparation step
 - ✓ Convert ²²⁴Ra form for optimal CatIX sorption
 - ✓ Progeny-free, low-dose
 - Module 3: ²²⁴Ra / resin binding and column packing
 - ✓ Homogenously loaded column beds
 - \checkmark 224Ra adsorbed across all resin beads
 - ✓ High ²²⁴Ra binding yield

Integrated the modules into an end-to-end system

- Integrated the modules into an end-to-end system
 - Current: Process optimization & generator testing
 - ~1 h end-to-end, from ²²⁸Th feedstock injection to packed ²¹²Pb generator column ready for load-out
 - Human intervention limited to:
 - ✓ 228 Th stock insertion (front end, accomplished inside hot cell)
 - ✓ Generator column disconnect (back end)

- Integrated the modules into an end-to-end system
 - Current: Process optimization & generator testing
 - ~1 h end-to-end, from ²²⁸Th feedstock injection to packed ²¹²Pb generator column ready for load-out
 - Human intervention limited to:
 - ✓ 228 Th stock insertion (front end, accomplished inside hot cell)
 - ✓ Generator column disconnect (back end)
 - Near future: Transition from "R&D" to routine production
 - Build system into a hard-walled radiological containment structure

Final generator packing step

• ²²⁴Ra-loaded resin is slurried & delivered in-line to generator column housing assembly

- New acrylic shell assures reduction of:
 - Bremsstrahlung radiation (primarily from ²⁰⁸Tl beta (β_{max}=1.8MeV); and
 - Containment of virtually all ²²⁰Rn

Part II. ²¹²Pb generator performance evaluations

Recent testing performed up to ~19 mCi

Pacific Northwest

²¹²Pb / ²¹²Bi generator

- - - ✓ (w/ & w/o a disposable "catch column")
- All milkings performed using digital pumps for absolute volume & flow rate control

²¹²Pb milking yield: Traditional milking

• Simple generator column milking process:

- Flow rate = 1.0 mL/min
- 1.0 mL 2 M HCI, followed by 1.0 mL H₂O flush & air for storage ✓ Elutes ²¹²Pb & ²¹²Bi together

Traditional milking

Activity level	Generator	Mean yield, (%)	Uncertainty, ±1s (%)	n
	3	93.64	1.52	3
Sub-clinical	4	93.77	1.33	3
	6	92.02	3.57	3
	Mean	93.14	2.22	9
Clinical	7	92.48	2.88	7
	8	94.81	0.84	3
	9	94.98	0.75	4
	Mean	93.69	2.38	14
Gra	nd mean	93.48	2.28	23

14

²¹²Pb milking yield: w/ "catch column"

- Simple generator column milking process:
 - Flow rate = 1.0 mL/min
 - 1.0 mL 2 M HCl, followed by 1.0 mL H₂O flush & air for storage
 ✓ Elutes ²¹²Pb & ²¹²Bi together
 - Generator milked with "catch column"
 - ✓ "catch column" placed between generator outlet & ²¹²Pb collection vessel

Traditional milking

w/ "catch column"

Activity level	Generator	Mean yield, (%)	Uncertainty, ±1s (%)	n
Sub-clinical	3	93.64	1.52	3
	4	93.77	1.33	3
	6	92.02	3.57	3
	Mean	93.14	2.22	9
Clinical	7	92.48	2.88	7
	8	94.81	0.84	3
	9	94.98	0.75	4
	Mean	93.69	2.38	14
Gra	nd mean	93.48	2.28	23

Activity level	Generator	Mean yield, (%)	Uncertainty, ±1s (%)	n
	3	92.20	3.87	5
Sub-clinical	4	88.00	8.49	3
	6	86.84	1.42	3
	Mean	88.22	6.88	12
Clinical	7	84.00	5.13	6
	8	92.48	0.63	5
	9	90.06	6.24	4
	Mean	88.44	5.73	15
Gra	nd mean	88.34	6.14	27

Disposable ~100µL MP-50 resin bed

²¹²Pb milking yield: Tandem column

- Tandem column milking process (method adapted from [1]):
 - Flow rate = 1.0 mL/min
 - I.0 mL 2 M HCl generator milking volume, followed by 2 M HCl wash of tandem col.
 - DI water rinse of tandem col.
 - ²¹²Pb elution w/ 1.0 mL NaOAc (pH ~6)
 - ✓ Elutes ²¹²Pb sans ²¹²Bi

Traditional milking

w/ "catch column"

Activity level	Generator	Mean yield, (%)	Uncertainty, ±1s (%)	n	Activity level	Generator	Mean yield, (%)	Uncertainty, ±1s (%)	n					
	3	93.64	1.52	3		3	92.20	3.87	5					
Sub-clinical	4	93.77	1.33	3	Sub-clinical	4	88.00	8.49	3					
	6	92.02	3.57	3		6	86.84	1.42	3	Activity	Concreter	Mean yield,	Uncertainty,	10
	Mean	93.14	2.22	9		Mean	88.22	6.88	12	level	Generator	(%)	±1s (%)	n
	7	92.48	2.88	7		7	84.00	5.13	6	Sub-clinical	6	92.93	0.29	2
Clinical	8	94.81	0.84	3	Clinical	8	92.48	0.63	5		7	94.55	1.35	3
	9	94.98	0.75	4		9	90.06	6.24	4	Clinical	8	92.45	0.93	2
	Mean	93.69	2.38	14		Mean	88.44	5.73	15		9	91.74	2.34	4
Gra	nd mean	93.48	2.28	23	Gra	nd mean	88.34	6.14	27	Gra	nd mean	92.85	1.87	11

[1] M. Li, et al., "Automated cassette-based production of high specific activity [^{203/212}Pb]peptide-based theranostic radiopharmaceuticals for image-guided radionuclide therapy for cancer", Appl Rad & Isotop, 127 (2017), 52-60.

Tandem column

- Each milked ²¹²Pb product fraction evaluated for presence of ²²⁴Ra
- We age the milked products to determine ²²⁴Ra content @ t = 0
 - Count data modeled by two-component exponential decay best fit (SigmaPlot 14.0)
 - Generator 9 (~19 mCi) milkings are illustrated here

²²⁴Ra 0 SigmaPlot 14.0)

- Each milked ²¹²Pb product fraction evaluated for presence of ²²⁴Ra
- We age the milked products to determine 224 Ra content @ t = 0
 - Count data modeled by two-component exponential decay best fit (SigmaPlot 14.0)
 - Generator 9 (~19 mCi) milkings are illustrated here

Traditional milking (Ra-1)*

* y-axis is ²¹²Pb+²¹²Bi activity, as '030' setting on Capintec CRC-25R

- O Pb
- O Ra-1

- Each milked ²¹²Pb product fraction evaluated for presence of ²²⁴Ra
- We age the milked products to determine 224 Ra content @ t = 0
 - Count data modeled by two-component exponential decay best fit (SigmaPlot 14.0)
 - Generator 9 (~19 mCi) milkings are illustrated here

w/ "catch column" (Ra-2)*

* y-axis is ²¹²Pb+²¹²Bi activity, as '030' setting on Capintec CRC-25R

- O Pb
- O Ra-1
- 🗆 Ra-2

- Each milked ²¹²Pb product fraction evaluated for presence of ²²⁴Ra
- We age the milked products to determine 224 Ra content @ t = 0
 - Count data modeled by two-component exponential decay best fit (SigmaPlot 14.0)
 - Generator 9 (~19 mCi) milkings are illustrated here

Tandem column (Ra-3)*

- O Ra-1
- 🗆 Ra-2
- ♦ Ra-3

²²⁴Ra breakthrough fractions for Generator 9 are illustrated below

- ²²⁴Ra breakthrough fractions for Generator 9 are illustrated below
- Overall mean values across all generators prepared to date (± 1s):
 - Traditional:
 - w/ catch col.:
 - Tandem col.:
- $(3.0 \pm 2.1) \times 10^{-3} (n=20)$
- (1.9 ± 1.7) x 10⁻⁴ (n=25)
- (1.8 ± 1.8) x 10⁻⁴ (n=17)

Radiolabeling studies on ²¹²Pb product fractions

- Conducting ²¹²Pb product titrations with TCMC chelate [2] to assess ²⁰⁸⁺²¹²Pb binding affinities in NaOAc sol'ns
 - 1/10th of product added to increasing quantities of TCMC, in pH 6 NaOAc buffer
 - [Preliminary] evaluation of differences in ²⁰⁸⁺²¹²Pb binding to TCMC between the various milking methods described herein

Next steps for FY23:

- PNNL working towards becoming a NIDC supplier ($\leq 15 \text{ mCi}$)
 - Would begin with monthly production schedule, with capacity to increase production frequency as demand dictates
- Concurrently, we will evaluate our ability to produce higher-activity generators (≤ 50 mCi)
 - And will assess whether higher activities result in diminishing generator performance / radiolytic effects
- [Contact NIDC if interested in conducting an independent performance evaluation on these generators]

- Developed a remote fluidic system for auto-preparation of generators
 - Dramatic reduction in production staff dose
 - End-to-end processing time of ~1 h
 - Reproducible ²²⁴Ra loading (±2%)
 - Near-quantitative ²²⁸Th feedstock recycling (99.6±1.2%)
 - Acrylic shell inhibits Bremsstrahlung & ²²⁰Rn leakage
- FY22 was first generator testing at clinical (11-19 mCi) levels
 - Pb milking yields (~90% in 1mL of 2M HCI)
 - Radionuclidic purity (²²⁴Ra breakthrough) is dependent on three milking options evaluated
 - ²⁰⁸⁺²¹²Pb product binding evaluations w/ TCMC chelate are ongoing
 - ✓ Pb:TCMC binding is dependent on milking option; with tandem column method demonstrating highest TCMC binding efficacy
- In FY23:
 - Anticipate transition to production on behalf of NIDC
 - And, anticipate evaluating generators w/ scaled-up ²²⁴Ra levels

Acknowledgements

- This research was supported by the U.S. Department of Energy Isotope Program, managed by the Office of Science.
- PNNL's Shielded Facilities Organization (SFO):
 - ✓ Johnny Trevino
 - ✓ April Wickersham
 - ✓ Robert Cox
 - ✓ Nicole Strom
 - ✓ Jordan Condray
 - ✓ Michael Hansen
- Radiological safety:
 - ✓ Woody Buckner
 - ✓ Marilyn Wirth
- System & software support:
 - ✓ Jared Johnson

Thank you!

26