Remotely-prepared $^{224}\text{Ra}/^{212}\text{Pb}$ generator columns:

Process overview & recent performance evaluations

Matthew J. O’Hara,
Lucas P. Boron-Brenner
Purpose of Work

- Limited generator availability in the U.S.
 - NIDC presently supplies generators
 - Historically a manual assembly process
 ✓ Time & dose intensive

- Generator demand is increasing
 - Requires improved assembly efficiencies w/ decreased production team dose

- PNNL set out to develop a fully automated fluidic system to isolate 224Ra from 228Th feedstock and prepare 224Ra-loaded generator columns
 - In FY21, we set up & demonstrated the process up to ~3 mCi level
 - In FY22, we scaled up to clinically relevant levels (11-19 mCi)
Part I.
Automated preparation of ^{212}Pb generator
Research Objectives

- Developed the process chemistry for in-line isolation of 224Ra from 228Th, and the remote assembly of 224Ra-loaded generator columns
• Developed the process chemistry for in-line isolation of ^{224}Ra from ^{228}Th, and the remote assembly of ^{224}Ra-loaded generator columns

• Developed three fluidic modules
 ▪ Module 1: ^{224}Ra purification from ^{228}Th
 ✓ In-line removal of dose contributors
 ✓ Radionuclidically pure ^{224}Ra
 ✓ Recovery and reuse of ^{228}Th
Research Objectives

- Developed the process chemistry for in-line isolation of ^{224}Ra from ^{228}Th, and the remote assembly of ^{224}Ra-loaded generator columns

- Developed three fluidic modules
 - Module 1: ^{224}Ra purification from ^{228}Th
 - In-line removal of dose contributors
 - Radionuclidically pure ^{224}Ra
 - Recovery and reuse of ^{228}Th
 - Module 2: ^{224}Ra preparation step
 - Convert ^{224}Ra form for optimal CatIX sorption
 - Progeny-free, low-dose
Research Objectives

- Developed the process chemistry for in-line isolation of ^{224}Ra from ^{228}Th, and the remote assembly of ^{224}Ra-loaded generator columns

- Developed three fluidic modules
 - Module 1: ^{224}Ra purification from ^{228}Th
 - In-line removal of dose contributors
 - Radionuclidically pure ^{224}Ra
 - Recovery and reuse of ^{228}Th
 - Module 2: ^{224}Ra preparation step
 - Convert ^{224}Ra form for optimal CatIX sorption
 - Progeny-free, low-dose
 - Module 3: ^{224}Ra/resin binding and column packing
 - Homogenously loaded column beds
 - ^{224}Ra adsorbed across all resin beads
 - High ^{224}Ra binding yield
Research Objectives

- Integrated the modules into an end-to-end system
Research Objectives

- Integrated the modules into an end-to-end system
- Current: Process optimization & generator testing
 - ~1 h end-to-end, from 228Th feedstock injection to packed 212Pb generator column ready for load-out
 - Human intervention limited to:
 - 228Th stock insertion (front end, accomplished inside hot cell)
 - Generator column disconnect (back end)
Research Objectives

• Integrated the modules into an end-to-end system
 • Current: Process optimization & generator testing
 ▪ ~1 h end-to-end, from 228Th feedstock injection to packed 212Pb generator column ready for load-out
 ▪ Human intervention limited to:
 ✓ 228Th stock insertion (front end, accomplished inside hot cell)
 ✓ Generator column disconnect (back end)
 • Near future: Transition from “R&D” to routine production
 ▪ Build system into a hard-walled radiological containment structure
Final generator packing step

- 224Ra-loaded resin is slurried & delivered in-line to generator column housing assembly

- New acrylic shell assures reduction of:
 - Bremsstrahlung radiation (primarily from 208Tl beta ($\beta_{max}=1.8$MeV); and
 - Containment of virtually all 220Rn
Part II.

212Pb generator performance evaluations

- Recent testing performed up to ~19 mCi
212Pb / 212Bi generator column performance testing

- Conduct daily milking tests for 10-12 days
 - Evaluate 212Pb + 212Bi co-elution in 2 M HCl
 ✓ (w/ & w/o a disposable “catch column”)
 - Evaluate in-line 212Pb conversion to acetate buffer
- All milkings performed using digital pumps for absolute volume & flow rate control

Daily 212Pb ingrowth
\[^{212}\text{Pb}\] milking yield: Traditional milking

- Simple generator column milking process:
 - Flow rate = 1.0 mL/min
 - 1.0 mL 2 M HCl, followed by 1.0 mL H\textsubscript{2}O flush & air for storage
 - Elutes \[^{212}\text{Pb}\] & \[^{212}\text{Bi}\] together

<table>
<thead>
<tr>
<th>Activity level</th>
<th>Generator</th>
<th>Mean yield, (%)</th>
<th>Uncertainty, ±1σ (%)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-clinical</td>
<td>3</td>
<td>93.64</td>
<td>1.52</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>93.77</td>
<td>1.33</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>92.02</td>
<td>3.57</td>
<td>3</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>93.14</td>
<td>2.22</td>
<td>9</td>
</tr>
<tr>
<td>Clinical</td>
<td>7</td>
<td>92.48</td>
<td>2.88</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>94.81</td>
<td>0.84</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>94.98</td>
<td>0.75</td>
<td>4</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>93.69</td>
<td>2.38</td>
<td>14</td>
</tr>
<tr>
<td>Grand mean</td>
<td></td>
<td>93.48</td>
<td>2.28</td>
<td>23</td>
</tr>
</tbody>
</table>

Traditional milking
212Pb milking yield: w/ “catch column”

- Simple generator column milking process:
 - Flow rate = 1.0 mL/min
 - 1.0 mL 2 M HCl, followed by 1.0 mL H2O flush & air for storage
 - Elutes 212Pb & 212Bi together
 - Generator milked with “catch column”
 - “catch column” placed between generator outlet & 212Pb collection vessel

<table>
<thead>
<tr>
<th>Activity level</th>
<th>Generator</th>
<th>Mean yield, (%)</th>
<th>Uncertainty, ±1σ (%)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-clinical</td>
<td>3</td>
<td>93.64</td>
<td>1.52</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>93.77</td>
<td>1.33</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>92.02</td>
<td>3.57</td>
<td>3</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>93.14</td>
<td>2.22</td>
<td>9</td>
</tr>
<tr>
<td>Clinical</td>
<td>7</td>
<td>92.48</td>
<td>2.88</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>94.81</td>
<td>0.84</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>94.98</td>
<td>0.75</td>
<td>4</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>93.69</td>
<td>2.38</td>
<td>14</td>
</tr>
<tr>
<td>Grand mean</td>
<td></td>
<td>93.48</td>
<td>2.28</td>
<td>23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Activity level</th>
<th>Generator</th>
<th>Mean yield, (%)</th>
<th>Uncertainty, ±1σ (%)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-clinical</td>
<td>3</td>
<td>92.20</td>
<td>3.87</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>88.00</td>
<td>8.49</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>86.84</td>
<td>1.42</td>
<td>3</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>88.22</td>
<td>6.88</td>
<td>12</td>
</tr>
<tr>
<td>Clinical</td>
<td>7</td>
<td>84.00</td>
<td>5.13</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>92.48</td>
<td>0.63</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>90.06</td>
<td>6.24</td>
<td>4</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>88.44</td>
<td>5.73</td>
<td>15</td>
</tr>
<tr>
<td>Grand mean</td>
<td></td>
<td>88.34</td>
<td>6.14</td>
<td>27</td>
</tr>
</tbody>
</table>

Traditional milking

w/ “catch column”

Disposable ~100µL MP-50 resin bed
\(\text{212}\text{Pb milking yield: Tandem column} \)

- Tandem column milking process (method adapted from [1]):
 - Flow rate = 1.0 mL/min
 - 1.0 mL 2 M HCl generator milking volume, followed by 2 M HCl wash of tandem col.
 - DI water rinse of tandem col.
 - \(\text{212}\text{Pb} \) elution w/ 1.0 mL NaOAc (pH ~6)
 - Elutes \(\text{212}\text{Pb} \) sans \(\text{212}\text{Bi} \)

<table>
<thead>
<tr>
<th>Activity level</th>
<th>Generator</th>
<th>Mean yield, (%)</th>
<th>Uncertainty, ±1s (%)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-clinical</td>
<td>3</td>
<td>93.64</td>
<td>1.52</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>93.77</td>
<td>1.33</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>92.02</td>
<td>1.57</td>
<td>3</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>93.14</td>
<td>2.22</td>
<td>9</td>
</tr>
<tr>
<td>Clinical</td>
<td>7</td>
<td>92.48</td>
<td>2.88</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>94.81</td>
<td>0.84</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>94.98</td>
<td>0.75</td>
<td>4</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>93.69</td>
<td>2.38</td>
<td>14</td>
</tr>
<tr>
<td>Grand mean</td>
<td></td>
<td>93.48</td>
<td>2.28</td>
<td>23</td>
</tr>
</tbody>
</table>

Traditional milking w/ “catch column”

<table>
<thead>
<tr>
<th>Activity level</th>
<th>Generator</th>
<th>Mean yield, (%)</th>
<th>Uncertainty, ±1s (%)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-clinical</td>
<td>3</td>
<td>92.20</td>
<td>3.87</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>88.00</td>
<td>8.49</td>
<td>3</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>88.22</td>
<td>6.88</td>
<td>12</td>
</tr>
<tr>
<td>Clinical</td>
<td>7</td>
<td>84.00</td>
<td>5.13</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>92.48</td>
<td>0.63</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>90.06</td>
<td>6.24</td>
<td>4</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>88.44</td>
<td>5.73</td>
<td>15</td>
</tr>
<tr>
<td>Grand mean</td>
<td></td>
<td>88.34</td>
<td>6.14</td>
<td>27</td>
</tr>
</tbody>
</table>

Tandem column

<table>
<thead>
<tr>
<th>Activity level</th>
<th>Generator</th>
<th>Mean yield, (%)</th>
<th>Uncertainty, ±1s (%)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub-clinical</td>
<td>6</td>
<td>92.93</td>
<td>0.29</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>94.55</td>
<td>1.35</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>92.45</td>
<td>0.93</td>
<td>2</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>92.85</td>
<td>1.87</td>
<td>11</td>
</tr>
</tbody>
</table>

Evaluation of 224Ra breakthrough

- Each milked 212Pb product fraction evaluated for presence of 224Ra
- We age the milked products to determine 224Ra content @ $t = 0$
 - Count data modeled by two-component exponential decay best fit (*SigmaPlot 14.0*)
 - Generator 9 (~19 mCi) milkings are illustrated here

Example 224Ra determination @ $t=0$ approach
Evaluation of 224Ra breakthrough

- Each milked 212Pb product fraction evaluated for presence of 224Ra
- We age the milked products to determine 224Ra content @ $t = 0$
 - Count data modeled by two-component exponential decay best fit (*SigmaPlot 14.0*)
 - Generator 9 (~19 mCi) milkings are illustrated here

Traditional milking (Ra-1)*

* y-axis is 212Pb+212Bi activity, as ‘030’ setting on Capintec CRC-25R
Evaluation of 224Ra breakthrough

• Each milked 212Pb product fraction evaluated for presence of 224Ra
• We age the milked products to determine 224Ra content @ $t = 0$
 ▪ Count data modeled by two-component exponential decay best fit (*SigmaPlot 14.0*)
 ▪ Generator 9 (~19 mCi) milkings are illustrated here

\[\text{Activity, MBq} \]
\[\text{Generator age, d} \]

* y-axis is 212Pb+212Bi activity, as ‘030’ setting on Capintec CRC-25R
Evaluation of ^{224}Ra breakthrough

- Each milked ^{212}Pb product fraction evaluated for presence of ^{224}Ra
- We age the milked products to determine ^{224}Ra content @ $t = 0$
 - Count data modeled by two-component exponential decay best fit (*SigmaPlot 14.0*)
 - Generator 9 (~19 mCi) milkings are illustrated here

Tandem column (Ra-3)

* y-axis is $^{212}\text{Pb} + ^{212}\text{Bi}$ activity, as ‘030’ setting on Capintec CRC-25R
Evaluation of ^{224}Ra breakthrough, cont’d

- ^{224}Ra breakthrough fractions for Generator 9 are illustrated below
Evaluation of 224Ra breakthrough, cont’d

- 224Ra breakthrough fractions for Generator 9 are illustrated below
- Overall mean values across all generators prepared to date ($\pm 1\sigma$):
 - Traditional: $(3.0 \pm 2.1) \times 10^{-3}$ (n=20)
 - w/ catch col.: $(1.9 \pm 1.7) \times 10^{-4}$ (n=25)
 - Tandem col.: $(1.8 \pm 1.8) \times 10^{-4}$ (n=17)
Radiolabeling studies on 212Pb product fractions

- Conducting 212Pb product titrations with TCMC chelate [2] to assess $^{208+212}$Pb binding affinities in NaOAc sol’ns
 - $1/10^{th}$ of product added to increasing quantities of TCMC, in pH 6 NaOAc buffer
 - [Preliminary] evaluation of differences in $^{208+212}$Pb binding to TCMC between the various milking methods described herein
 - ✓ To date, we see a ~10x Pb:TCMC binding improvement when employing the tandem column method

[2] 1,4,7,10-Tetrakis(aminocarbonylmethyl)-1,4,7,10-tetraazacyclododecane
Next steps for FY23:

- PNNL working towards becoming a NIDC supplier (≤ 15 mCi)
 - Would begin with monthly production schedule, with capacity to increase production frequency as demand dictates

- Concurrently, we will evaluate our ability to produce higher-activity generators (≤ 50 mCi)
 - And will assess whether higher activities result in diminishing generator performance / radiolytic effects

- [Contact NIDC if interested in conducting an independent performance evaluation on these generators]
Summary

• Developed a remote fluidic system for auto-preparation of generators
 ▪ Dramatic reduction in production staff dose
 ▪ End-to-end processing time of ~1 h
 ▪ Reproducible 224Ra loading (±2%)
 ▪ Near-quantitative 228Th feedstock recycling (99.6±1.2%)
 ▪ Acrylic shell inhibits Bremsstrahlung & 220Rn leakage

• FY22 was first generator testing at clinical (11-19 mCi) levels
 ▪ Pb milking yields (~90% in 1mL of 2M HCl)
 ▪ Radionuclidic purity (224Ra breakthrough) is dependent on three milking options evaluated
 ▪ $^{208+212}$Pb product binding evaluations w/ TCMC chelate are ongoing
 ✓ Pb:TCMC binding is dependent on milking option; with tandem column method demonstrating highest TCMC binding efficacy

• In FY23:
 ▪ Anticipate transition to production on behalf of NIDC
 ▪ And, anticipate evaluating generators w/ scaled-up 224Ra levels
Acknowledgements

• This research was supported by the U.S. Department of Energy Isotope Program, managed by the Office of Science.

• PNNL’s Shielded Facilities Organization (SFO):
 ✓ Johnny Trevino
 ✓ April Wickersham
 ✓ Robert Cox
 ✓ Nicole Strom
 ✓ Jordan Condray
 ✓ Michael Hansen

• Radiological safety:
 ✓ Woody Buckner
 ✓ Marilyn Wirth

• System & software support:
 ✓ Jared Johnson

Thank you!