

Efficient chelation of ¹³⁴Ce/¹³⁴La using the macrocyclic chelators DOTA and Macropa as potential PET imaging agents

Robert Flavell, MD, PhD Associate Professor

Henry VanBrocklin, PhD Professor

Department of Radiology and Biomedical Imaging, University of California, San Francisco

Efficient chelation of ¹³⁴Ce/¹³ macrocyclic chelators DOTA as potential PET imaging age

Robert Flavell, MD, PhD Associate Professor

Henry VanBrocklin, PhD Professor

Department of Radiology and Biomedical Imaging, Universe Francisco

K. Naidu Bobba, PhD Assistant Professional Researcher, UCSF

¹³⁴Ce/La pair

✓ Actinium, cerium and lanthanum have similar chemical properties

- ✓ The ionic radii are similar, La (1.03 Å), Ce (1.01 Å) and Ac (1.12 Å)
- ✓ Thus, ¹³⁴Ce/La pair has been proposed as a PET imaging surrogate for ²²⁵Ac therapy, which is gaining increasing interest in cancer treatment

¹³⁴Ce/La pair (Abergel lab / LANL)

DTPA (+3 metal chelator)

¹³⁴Ce^{III} mimicking ²²⁵Ac^{III}

✓ DTPA & DOTA as chelators

✓ Imaging and biodistribution of [¹³⁴Ce]DOTA-Trastuzumab

Nature Chemistry, 2021,13(3),284-289
Nuclear Medicine and Biology 110–111 (2022) 28–36

Objective

- ✓ Develop a robust radiolabeling method for chelation with ¹³⁴Ce, which in turn can serve as a surrogate for ¹³⁴Ce/²²⁵Ac theranostic agents.
- Utilize the developed methods for imaging of prostate cancer murine models

Radiolabeling of Macropa.NH₂ & DOTA

✓ Both DOTA and Macropa are efficient ¹³⁴Ce chelators; Macropa is more effective at low L:M ratios

Radiolabeling of Macropa.NH₂ & DOTA

✤ Stability of ¹³⁴Ce-Macropa.NH₂

✓ Both DOTA and Macropa are efficient ¹³⁴Ce chelators; Macropa is more effective at low L:M ratios

TLC : C18, 10% NH₄CI:MeOH (1:1)

PET Imaging and Biodistribution

Imaging prostate cancer using ¹³⁴Ce

- PET imaging with ⁶⁸Ga-PSMA-11 or ¹⁸F-DCFPyL and radionuclide therapy using with ¹⁷⁷Lu-PSMA-617 is standard of care in prostate cancer
- We are developing immunoPET agents targeting CD46, an antigen highly expressed in prostate cancer
- We hypothesized these agents could be labeled with 134Ce and imaged using PET

Radiolabeling of PSMA-617

Radiolabeling of Macropa-PEG₄YS5

Entry	Ab. Qty. (μg)	¹³⁴ Ce (µCi)	RCY TLC (%)	RCP (%)	lsolated Yield (µCi/%)	SA (µCi/µg)	L:M ratio
1	22.14	122	100	-	-		1:1
2	221.4	1300	95.6	100	900 (69%)	4.1	1:1
3	150	749	90.8	-	-		1:1
4	105.6	320	91.9	-	-		1:1

Reaction monitoring by Radio iTLC

iTLC-SG, 50 mM EDTA, pH 5.5

Reaction kinetics by Radio iTLC **Dilution** in =¹³⁴Ce/La saline or PBS 1M NH₄OAc, PD 10 column pH = 8, 25 °C, 1 h. ∙N∽∽∽ H -N~~~ H Н Equilibrium in reaction mixture ¹³⁴La "recoil effect" Similar effect observed t_{1/2}=6.4 m in PSMA-617 labeling

(DOTA chelator)

PET Imaging & BioD of ¹³⁴Ce-Macropa-PEG₄YS5

✓ 22Rv1 xenografts at 7 d p.i.; PET Imaging (n=4) & BioD (n=5)
 ✓ High tumor uptake, low in background tissues except for liver

PET Imaging & BioD of ¹³⁴Ce-Macropa-PEG₄YS5

✓ 22Rv1 xenografts at 7 d p.i.; PET Imaging (n=4) & BioD (n=5)
 ✓ High tumor uptake, low in background tissues except for liver

Summary

- \checkmark Macropa.NH₂ showed more efficient chelation compared to DOTA
- ✓ ¹³⁴Ce-Macropa.NH₂ was stable in both PBS/saline and serum (95% at 7 d).
- ✓ Free ¹³⁴La may be ejected from chelators in physiologic buffers
- ✓ PET imaging and biodistribution with ¹³⁴Ce-Macropa-PEG₄-YS5 revealed high tumor uptake at 7 d p.i.; [¹³⁴Ce]PSMA-617 showed more modest uptake at 1 and 4h, consistent with prior results with ⁶⁸Ga and ⁸⁹Zr
- \checkmark ¹³⁴Ce labeled radiopharmaceuticals enable imaging of prostate cancer
- ✓ ¹³⁴Ce allows for PET imaging of Macropa-labeled complexes

Acknowledgements

Dr. K. Naidu Bobba PhD Dr. Henry VanBrocklin PhD Dr. Youngho Seo PhD Dr. Bin Liu PhD Dr. Anil Bidkar PhD Dr. Anil Bidkar PhD Dr. Niranjan Meher PhD Dr. Anju Wadhwa PhD Dr. Scott Bidlingmaier PhD Cyril Fong Suchi Drona

Thanks to Karen Sikes and the DOE isotope program for providing the ¹³⁴Ce

