Glioma Associated Immune Cells: Potential Targets for Novel Theranostics Molecules

Gary Kohanbash, PhD
Assistant Professor
Departments of Neurological Surgery and Immunology
University of Pittsburgh

Ac225 User-group
8/30/22
Brain tumors – an overview

- 700,000 Americans are living with a primary CNS tumor
- Gliomas are the most common
- Glioblastoma (GBM-IDHwt) is the deadliest and most common primary malignant brain tumor in adults
- GBM median survival is 12-14 months
- Brain tumors are the leading cause of cancer-related deaths in children

Better treatments for brain cancers are a pressing need

Despite decades of research outcome for brain tumors patients have only improved marginally
Why Immunotherapy (hope)?

• **CD11b+ Tumor Associated Myeloid cells (TAMs)** can account for >30% of a glioma’s mass

• **Multiple trials targeting TAMCs in glioma**
We keep developing immunotherapies for BT patients, but still we must overcome the very clear issue of TAMCs
Can we non-invasively image immunosuppressive TAMs in gliomas?
PET/CT of 89Zr-DFO-anti-CD11b (clone M1/70) in GL261 gliomas

Comparison of tumor without and with a blocking dose of Mab and normal brain

89Zr-anti-CD11b (tumor implant)

89Zr-anti-CD11b+ blocking Mab (tumor implant)

89Zr-anti-CD11b (normal brain)
What about an RPT approach to deplete TAMCs?

1. Will radioimmunotherapy targeting CD11b\(^+\) TAMCs contribute to greater survival through TAMC depletion?
2. Will TAMC depletion enhance checkpoint immunotherapy?

The chelator DOTA (used for Lu177) does not readily complex Zr-89. So, we tested a new chelator that could label both Lu-177 and Zr-89 at room temperature.
Zr89-Lumi804-anti-CD11b can be used to visualize TAMs in gliomas by immunoPET
TRT-treatment sensitizes murine gliomas to immunotherapy
Day 21 TRT-treated tumors are smaller than control or checkpoint treated tumors.
No signs of BM toxicity by CBC (at this dose)
177Lu-Lumi804-anti-CD11b reduces intratumoral and splenic CD11b+ cells
Alpha vs Beta Emitting Radionuclide

<table>
<thead>
<tr>
<th></th>
<th>α</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle</td>
<td>He</td>
<td>β-electron</td>
</tr>
<tr>
<td>Num. Of tracks to kill cell</td>
<td>2-3</td>
<td>10^3-10^4</td>
</tr>
<tr>
<td>Energy/distance</td>
<td>80 Kev/μm</td>
<td>0.2 Kev/μm</td>
</tr>
<tr>
<td>DNA damage</td>
<td>Irreversible</td>
<td>Reversible</td>
</tr>
<tr>
<td>Average distance</td>
<td>50-80 μM</td>
<td>1-10 mm</td>
</tr>
<tr>
<td>Potent single cell cluster kill</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
Our theory on how the different radionuclides may impact immunity?

Alpha particle
5-8 MeV
50-80 μM range

Beta particle
0.1-1 MeV
1-10 mM range

TAMC depletion

- Reduced TAMC-mediated immunosuppression (TAMC-irreparable DNA damage)

Immunosensitization

- T-cell recruitment (ICAM-1, CXCL16)
- Antigen presentation (MHC-I)
- Moderate TAMC reduction

Anti-tumor immunity
Immunoprobe conjugation Strategy

225Ac-DOTA-anti-CD11b

DOTA-NCS

$$\text{H}_2\text{N} \quad \text{NCS} \quad \text{H}_2\text{N}$$

$$\text{CON} \quad \text{N} \quad \text{CON}$$

$$\text{HO} \quad \text{OH} \quad \text{OH}$$

$$\text{N} \quad \text{N} \quad \text{N}$$

$$\text{O} \quad \text{O} \quad \text{O}$$

$$\text{N} \quad \text{N} \quad \text{N}$$

$$\text{O} \quad \text{O} \quad \text{O}$$

$$\text{H} \quad \text{N} \quad \text{H}$$

$$\text{H} \quad \text{N} \quad \text{H}$$

$$\text{37}\degree \text{C}, 17.5\text{h}, \text{Conj buffer, pH 8.5}$$

αCD11b

$$\text{Free Bound}$$

Radiolabeling

Fig: Bar graph representing percent radiolabelling yield calculated by ITLC method.

Data represented as Mean±SD (N=4)

Optimized Radiolabelling conditions found were

60 min incubation at 37°C with Sodium Acetate buffer.
Can cold antibody co-injection increase tumor uptake?

Alpha camera imaging of 225Ac-anti-CD11b following cold antibody coinjection (25-100µg)

200 nCi 225Ac on 6ug antibody
Survival of glioma-bearing mice following TAT with cold antibody pretreatment

Black line - Control
Colored lines - 225Ac-DOTA-CD11b (~200 nCi on 6ug antibody)

Cold Antibody co-injection

25 ug

50 ug

100 ug

p < 0.02

p < 0.01

p < 0.001
Can we better target the immunosuppressive TAMCs?

Good target
- High expression level
- Restriction to the cell type of interest
- Higher expression in the tumor than normal tissues

Yet another consideration: Radio-sensitization

Macrophages, especially M2 type TAMs, are one of the most radioresistant cells. Anti-oxidative molecules are produced by TAMs during radiotherapy, such as manganese superoxide dismutase (MnSOD), a scavenger of superoxide (O$_2^-$) ions, which confer cellular resistance against damaging effects of radiotherapy.

Yumin Zhang, Zujian Feng, Jinjian Liu, Hui Li, Qi Su, Jiamin Zhang, Pingsheng Huang, Weiwei Wang, Jianfeng Liu, Polarization of tumor-associated macrophages by TLR7/8 conjugated radiosensitive peptide hydrogel for overcoming tumor radioresistance, Bioactive Materials, Volume 16, 2022, Pages 359-371,

So many questions remain?

1) High dose vs low dose for immunotherapy-sensitization?
2) Differences of alpha and beta emitters on the TME?
3) Other therapeutic radionuclides?
3) How will specific activity impact tumor uptake?
4) What is the best target to deplete immunosuppressive TAMCs?
5) How many times should we give the TRT?
6) Timing (unique for targeting TAMC vs tumors antigens)?
7) Should we target other immunosuppressive cells (Tregs)?
8) Ultimately, can we deplete TAMCs safety in patients to improve immunotherapy responses?
Summary

1) TAMCs in brain tumors promote tumor growth and are a barrier to effective immunotherapy

2) TAMCs can be visualized in preclinical gliomas using Zr-89-DFO-anti-CD11b

3) anti-CD11b RPT can allow for both imaging (with Zr-89) of TAMs and targeting (with Lu-177 or Ac-225) of TAMs within our glioma model

4) Targeting of TAMCs can improve immunotherapy responses in murine gliomas.
Credits

Funding: DIPG ALL-IN (PI), St. Badrick’s Foundation (PI), Brain Tumor Funders’ Collaborative (PI), American Brain Tumor Association, UPMC CMRF (PI), Pittsburgh Foundation Copeland Fund (PI), CHP Scientific Program, NIBIB R21 EB02667501 (Co-PI), NCI R01 CA187219 (Co-I), NCI R01CA222804 (Co-I), NCI P01 CA163205 (Co-I).

Collaborations
Dr. Jessie Nedrow
Dr. W. Barry Edwards