

Ac-225 DOE Isotope Program User Group Meeting

Cathy S. Cutler, Brookhaven National Laboratory

Dan Stracener, Oak Ridge National Laboratory, Project Manager, U.S. DOE Tri-Lab

- A brief perspective on supply/demand for ²²⁵Ac
- High-energy accelerator production of ²²⁵Ac (with ²²⁷Ac co-product)
- Status of Drug Master File development, FDA interactions and licensing issues
- Improvements and alternate production routes being pursued
- Roundtable presentations on experiences with accelerator-produced ²²⁵Ac

ORNL ²²⁵Ac Finished Product

• Open Forum Q&A

- The alpha emitter market is expected to witness a healthy CAGR of 21% 2022-2028 to 37% from 2022-2027.¹
- Driving the market is increased awareness about the potential benefits of targeted alpha therapy and the growing number of patients with cardiac and cancer ailments.
- Currently North America dominates the market, with the Asia Pacific region growing at the highest CAGR.

1. Market Watch news July 21, 2022, Morder Intelligence Alpha Emitter Market Report

Cancer Type	Radioconjugate	Patients
Leukemia	²¹³ Bi-anti-CD33-mAb	49
	²²⁵ Ac-anti-CD33-mAb	76
Lymphoma	²¹³ Bi-anti-CD20-mAb	12
Melanoma	²¹³ Bi-anti-MCSP-mAb	54
Bladder cancer	²¹³ Bi-anti-EGFR-mAb	12
Glioma	²¹³ Bi-Substance P	68
	²²⁵ Ac-Substance P	20
Neuroendocrine tumors	²¹³ Bi-DOTATOC	25
	²²⁵ Ac-DOTATOC	39
Prostate cancer	²²⁵ Ac-PSMA617	>400

²²⁵Ac-DOTA-PSMA-617 has demonstrated the power of Targeted Alpha Therapy (TAT) and is paving the way for a variety of other applications in oncology as well as infectious disease.

A. Morgenstern, C. Apostolidis, F. Bruchertseifer. Seminars in Nucl Med. **2020** 50(2): 119–123

Ac-225 Clinical Trials

- (8) Acute myeloid leukemia, ²²⁵Ac-lintuzumab, and in combination therapy, ²²⁵Ac-HuM195
- Colorectal Cancer, ²²⁵Ac-DOTA-M5A anti-CEA antibody
- (10)Prostate Cancer, ²²⁵Ac-PSMA I&T, ²²⁵Ac-J591, ²²⁵Ac-J591+ ¹⁷⁷Lu-PSMA I&T, ²²⁵Ac-J591+ pembrolizumab + ARPI, ²²⁵Ac-antibody targeting human Kallikrein-2(hK2) for advanced Prostate cancer
- Multiple Myeloma, ¹¹¹In and ²²⁵Ac-DOTA-daratumumab
- (2)Solid tumors ¹¹¹In and ²²⁵Ac-FPI-1434, ¹¹¹In-FPI-1967 and ²²⁵Ac-FPI-1966 and vofatamab
- GEP-NET ²²⁵Ac-somatostatin analog
- Metastatic Uveal melanoma ²²⁵Ac-MTI-201

Number in brackets indicates number of clinical trials.

²²⁵Ac Supply & Demand

Current worldwide supply of ²²⁵Ac from ²²⁹Th/²²⁵Ac generators ranges between 1200-1700 mCi/yr*

Patient doses, as informed by clinical trials, are estimated at:

 $^{225}\mbox{Ac:}$ 2-5 $\mu\mbox{Ci}$ per patient kg

(160-640 µCi/patient)

²¹³Bi: 1 mCi per patient kg
(Optimum generator loading estimated at 100-150 mCi ²²⁵Ac)

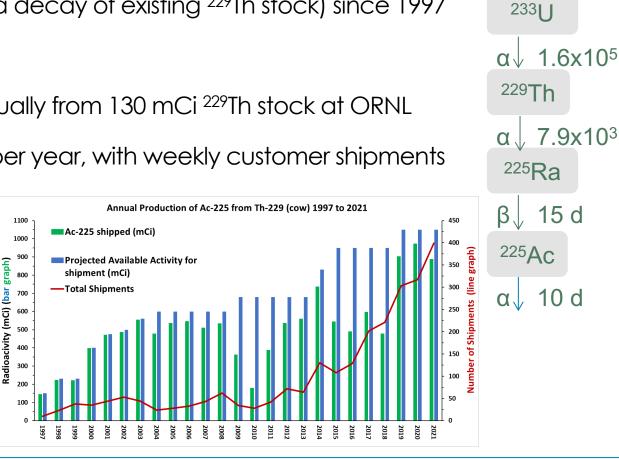
Projection of ²²⁵Ac demand assuming multiple, approved ²²⁵Ac and ²¹³Bi drugs and robust clinical R&D programs could be in the hundreds of Ci/year**

*International Atomic Energy Agency. Technical Meeting Report "Alpha Emitting Radionuclides and Radiopharmaceuticals for Therapy" IAEA Headquarters Vienna, Austria, June **2013**

And

International Atomic Energy Agency. Technical Meeting Report "Supply of Actinium-225" IAEA Headquarters Vienna, Austria, October **2018**

**US DOE Offices of Nuclear Energy and Nuclear Physics "2008 Workshop on The Nation's Needs for Isotopes: Present and Future" Rockville, MD August 2008

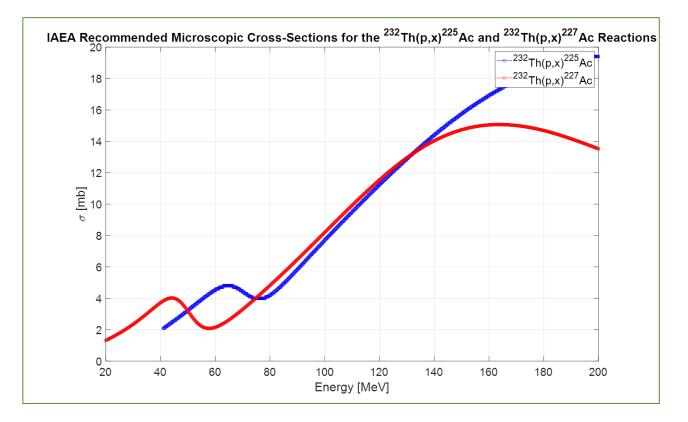


Actinium-225 Production at ORNL

- ORNL has been the main supplier of ²²⁵Ac (via decay of existing ²²⁹Th stock) since 1997
- >10 Ci of ²²⁵Ac shipped in >2000 packages
- Approximately 1 Ci of ²²⁵Ac is harvested annually from 130 mCi ²²⁹Th stock at ORNL
- Thirteen 4-week campaigns are performed per year, with weekly customer shipments

Rationale for pursuing additional routes for production of ²²⁵Ac

 The present supply is insufficient to meet the growing research and medical applications demands for ²²⁵Ac



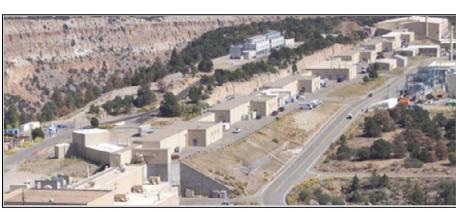
Accelerator Production via 232 Th(p,x) 225 Ac:

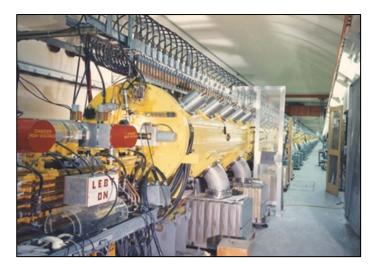
Facility	Anticipated Single Target Ac-225 Yields (10 day irradiation)
LANL (100 MeV, 250 µA)	1.3 Ci
BNL (200 MeV, 165 μΑ)	2.2 Ci

Future Planned Facility and Targetry investments at IPF and BLIP will further increase our single target projected yields to:

- LANL 450 μA 2.3 Ci
- BNL 300 µA 4.0 Ci

J.W. Weidner et al. Appl. Radiat. Isot. 70 (**2012**) 2602 J.W. Engle et. al. Phys. Rev. C. 88 (**2013**) 014604 J.W. Engle et. al. Radiochim. Acta 102 (**2014**) 569 J.R. Griswold et. al. Appl. Radiat. Isot. 118 (**2016**) 366





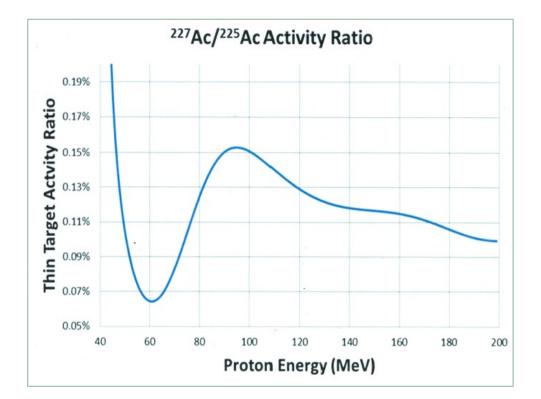
Basis of the Tri-Lab Effort:

Leveraging Unique Isotope Program Facilities, Capabilities, and Expertise to Address ²²⁵Ac Supply

ORNL - Approximately 25 years of experience in the isolation of ²²⁵Ac from fissile ²³³U via ²²⁹Th

LANL Isotope Production Facility (IPF) at LANSCE; 100 MeV incident energy up to 275 µA for routine production

BNL Linac at the Brookhaven Linac Isotope Producer (BLIP) 165 μA intensity to targets at incident energies ranging from 66-202 MeV



Production of ²²⁵Ac via high-energy accelerator results in the co-production of ²²⁷Ac ($t_{1/2}$ = 21.8 y)

Ratio improves at higher proton energy but degrades with longer irradiation time –<u>this ratio</u> and its time dependence are precisely known ≤ <u>2%</u>

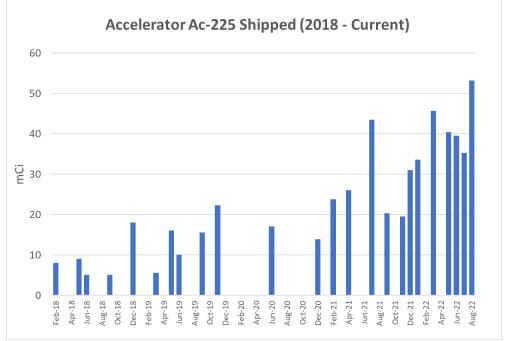
²²⁷Ac co-product creates a unique set of challenges – perceptions and facility licensing (NRC), waste disposition

These challenges are not unique and have been addressed for other isotope products

Instantaneous activity ratio of ²²⁷Ac to ²²⁵Ac for a thin Th target as a function of proton beam energy. Note that beam energy range captures current capabilities at BNL's BLIP and LANL's IPF facilities.

- Accelerator-produced ²²⁵Ac performs similar to ²²⁹Th-derived ²²⁵Ac
 - direct labeling efficiencies are comparable
 - ²¹³Bi generator performance is the same
 - the impact of ²²⁷Ac content on dosimetry has been demonstrated to be small
- Challenges remain with respect to the logistical considerations associated with the ²²⁷Ac co-product
 - facility licensing (decommissioning funding plans)
 - discussions ongoing with the NRC to potentially obtain an exemption as previously done for ⁶⁸Ge
 - patient waste (likely not an issue for an approved drug)

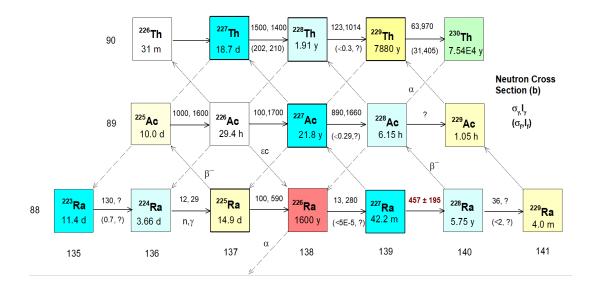
11



- A Type II Drug Master File (DMF) was submitted in December 2019 for accelerator produced Ac-225
- A Type II DMF was submitted in December 2020 for the ²²⁹Th-derived ²²⁵Ac product
- Interaction with the Food and Drug Administration is ongoing in reference to both products
- We are committed to making these products available to our customers/the medical community and are happy to address any further questions

Continuing Efforts to Increase Availability of ²²⁵Ac

- Monthly production, routinely achieving up to 50 mCi/batch at end of processing.
- Limited by processing capability and shipping transit times
- New local processing capability coming online at BNL and planned for LANL.
- For FY2022 to date: 307 mCi has been shipped (8 shipments to date).
- Building in processing capability redundancy to enhance reliability



Alternative Routes of Production Under Investigation

- ANL electron linac production route
 - ${}^{226}Ra(\gamma,n){}^{225}Ra \rightarrow {}^{225}Ac$
- BNL low energy cyclotron route - ²²⁶Ra(p,2n)²²⁵Ac
- ORNL neutron production route $- {}^{226}Ra(3n,\gamma){}^{229}Ra \rightarrow {}^{229}Ac \rightarrow {}^{229}Th$

S. Hogle et al., Reactor Production of Thorium-229, Appl. Radiat. Isot. 114, 19 (2016)

$\beta + \rightarrow$ \rightarrow^{ϵ} ¹³⁴La ¹³⁴Ba_(stable) **Evaluation batches** La 134 γ (162, 1 134 Ce $t_{\frac{1}{2}}$ = 3.2 d

in progress!

Isotope Program

U.S. Department of Energy

Ce 134 75.9 h

6.67 m

 $\beta^+ 2.7...$ γ 605,(1555)

- ¹³⁴Ce is a potential f-element PET imager that is chemically similar to Ac and Th.
- The $^{134}Ce/^{134}La$ can be used to image ^{225}Ac when reduced (¹³⁴Ce^{III}) and ²²⁷Th when oxidized $(^{134}Ce^{IV})$.

 134 La t_{1/2} = 6.7 min

¹³⁴Ce

Los Alamos

U.S. DEPARTMENT OF

ENERGY

- The Tri-Lab effort is routinely producing ²²⁵Ac and <u>product is available</u> for end users and shipments to multiple users have been completed
- We have distributed over 588 mCi of accelerator produced ²²⁵Ac to evaluators
- FY2022 to date: 307 mCi has been shipped.
- We are working with companies and research hospitals in preparation to support Phase I trials – responding to requests for Letters of Authorization
- ²²⁷Ac content is clinically insignificant from a dosimetry/toxicity perspective but challenges with perception and regulatory compliance remain; we have a well-defined forward path to address these challenges with DOE
- Increasing production and processing capabilities
- Continuing to scale up availability of this important isotope

For more information: <u>https://isotopes.gov/</u>

1:15 – 1:30 PM Gary Kohanbash (Dept. of Neurological Surgery at UPMC Children's Hospital of Pittsburgh)

- 1:30 1: 45 PM Kevin Roland (Fusion Pharma)
- 1:45 2:00 PM Ken Song (RazyeBio)
- 2:00 2: 15 PM Monideepa Roy (Actinium Pharma)
- 2:15 2: 45 PM Q&A & Discussion

