A Possible Theranostic Approach to Treating Metastatic Neuroblastoma

Alan B. Packard, PhD.

Boston Children’s Hospital
Harvard Medical School
Boston, MA

USDOE August 2021
Disclosures

Clarity Pharmaceuticals
(Research Funding)
Neuroblastoma

- The second most common solid malignancy in children
- Small number of patients
 - 650 to 700 new cases/y in the US*
- Average age at first presentation – 19 months
- Frequently diagnosed at later stages (stage 3-4)
- Early treatments are effective, but patients frequently (>75%) relapse with widespread metastatic disease
- Survival rate of patients with relapsed disease is extremely low
- Can we improve their prognosis?

*http://www.cncfhope.org/CNCF_FAQs
SSTR2

- Present on up to 90% of NB tumors
- Octreotide derivative
- High binding affinity
- Peptide
- 68Ga-DOTATATE (NETSPOT) approved for imaging adult somatostatin-receptor positive neuroendocrine tumors
 - Not extensively evaluated in neuroblastoma
- 177Lu-DOTATATE (Lutathera) approved for treating adult somatostatin-receptor positive neuroendocrine tumors
 - Not extensively evaluated in neuroblastoma
Radiolabeled Peptides in Neuroblastoma

SSTR2 Receptor

Why look beyond 68Ga-DOTATATE (NETSPOT) and 177Lu-DOTATATE (Lutathera)?

68Ga-DOTATATE

- High cost of the 68Ge/68Ga generator
- Availability of the 68Ge/68Ga generator
- Low resolution of 68Ga images
- Short half-life of 68Ga limits the ability to do dosimetry calculations

177Lu-DOTATATE

- Not a matched pair with 68Ga-DOTATATE
PET/CT (left) and PET (right) scans of patient with intestinal NET and multiple metastases.

More lesions are seen in intestinal region with 64Cu-DOTATATE than with 68Ga-DOTATOC.

Imaging: 68Ga versus 64Cu

68Ga
- $T_{1/2} = 68$ min
- β^+ Yield: 88.9%
- β^+ mean = 836 keV
- Positron range: 4 mm
- Production – 68Ge/68Ga generator, cyclotron
- Shippable? No

64Cu
- $T_{1/2} = 12.7$ h
- β^+ Yield: 17.6%
- β^+ mean = 278 keV
- Positron range: 1 mm
- Production – cyclotron
- Shippable? Yes
- Very labile
"Better" Chelator for Copper

Cu-DOTA

- Cu doesn’t fit within the core
- *pba* tail for binding to proteins
- Easy to make $^{64/67}$Cu complex
 - (acetate buffer, RT)
- Cu(II) lost from complex *in vivo*

Cu-MeCOSar

- Derivative of diamsar
- -COOH tail for binding to proteins
- Easy to make $^{64/67}$Cu complex
 - (acetate buffer, RT)
- Forms very stable Cu(II) complexes

Donnelly *et al.*, *Dalton Trans.*, **2014**, 43, 1386
What are the optimal properties for a therapeutic radionuclide?

- β^- (or α) emitter
- What is the “optimal” β^- energy?
- No/minimal extraneous emissions
- Half-life?
- Imagable gamma?
- Cost/availability
Therapy: ^{67}Cu vs. ^{177}Lu

^{67}Cu
- $T_{1/2} = 2.6 \text{ d}$
- β^- Yield: 100%
- β^- mean = 141 keV
- β^- range: 0.7 mm
- Gamma: 91 keV (7%), 93 keV (16%), 185 keV (49%)
- Production:
 - $^{68}\text{Zn}(p,2p)^{67}\text{Cu}$ (1.9 TBq/mg)
 - $^{68}\text{Zn}(\gamma,p)^{67}\text{Cu}$ (15 TBq/mg)

^{177}Lu
- $T_{1/2} = 6.6 \text{ d}$
- β^- Yield: 100%
- β^- mean = 134 keV
- β^- range: 0.7 mm
- Gammas: 123 keV (6%), 208 keV (10%)
- Production:
 - $^{176}\text{Lu}(n,\gamma)^{177}\text{Lu}$ (1.1 TBq/mg)
 - $^{176}\text{Yb}(n,\gamma)^{177}\text{Yb}$, $^{177}\text{Yb} \rightarrow ^{177}\text{Lu} + \beta^-$ (3 TBq/mg)
1. Does $^{64/67}\text{Cu-SARTATE}$ accumulate in NB liver metastases?

2. Is treatment with $^{67}\text{Cu-SARTATE}$ as effective as treatment with $^{177}\text{Lu-DOTATATE}$?

3. If we treat the disease early enough, can we prevent the development of metastases?
 - Prophylactic Radiotherapy
Dorsal incision – Expose the spleen
Inject 10^6 IMR32 (human) NB tumor cells
Wait 2 min.
Perform splenectomy
Close incision
1-2 mm mets are present ~2 weeks after inoculation
Imaging with ^{64}Cu-SARTATE

- Validate that the tumors have become established
- 3 weeks post-inoculation

Autoradiography and histology
Therapy

• Treat with 67Cu-SARTATE
• Single treatment
• 4 weeks post-inoculation
 • Two different doses
 • 9.35 MBq (250 μCi)
 • 18.5 MBq (500 μCi)
• 2 weeks post-inoculation
 • Single dose (18.5 MBq)
Survival After Initiation of Therapy
4 Week Tumor growth

Survival After Initiation of Therapy
2 Week Tumor growth

<table>
<thead>
<tr>
<th>4-Week Incubation</th>
<th>2-Week Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td>67Cu-SARTATE Dose</td>
<td>67Cu-SARTATE Dose</td>
</tr>
<tr>
<td>0 MBq (Control)</td>
<td>0 MBq (Control)</td>
</tr>
<tr>
<td>9.25 MBq</td>
<td>18.5 MBq</td>
</tr>
<tr>
<td>18.5 MBq</td>
<td>0 MBq</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mean Survival (d)</th>
<th>Mean Survival (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.6±8.5</td>
<td>43.0±8.1</td>
</tr>
<tr>
<td>9.5±1.6</td>
<td>55.6±9.1</td>
</tr>
<tr>
<td>15.6±4.0</td>
<td></td>
</tr>
</tbody>
</table>

\[p = 0.064 \quad p = 0.012 \]

Conclusions

• Can image small (<1 mm) liver mets with 64Cu-SARTATE
• 67Cu-SARTATE extends life in mice with smaller tumors (2 weeks)
• 67Cu-SARTATE is more effective for treating smaller tumors (2 weeks) than larger tumors (4 weeks)

Questions

• What about 177Lu-DOTATATE vs. 67Cu-SARTATE in metastases?
• Are higher doses of 67Cu-SARTATE even more effective in the smaller tumors?
• Are α emitters more effective than β^- emitters for these very small lesions?
• Are antibodies better vectors than peptides?
• Is treatment more effective if started earlier, with smaller tumors?
 • Can we prevent the growth of mets? (prophylactic radionuclide therapy)
Acknowledgments

Intellectual
• Jason LJ Dearling, PhD

Financial
• Clarity Pharmaceuticals
• Children’s Hospital Radiology Foundation

Thank you for your attention!