

A Possible Theranostic Approach to Treating Metastatic Neuroblastoma

Alan B. Packard, PhD.

Boston Children's Hospital Harvard Medical School Boston, MA

USDOE August 2021

ARVARD MEDICAL SCHOOL EACHING HOSPITAL

Clarity Pharmaceuticals (Research Funding)

- The second most common solid malignancy in children
- Small number of patients
 - 650 to 700 new cases/y in the US*
- Average age at first presentation 19 months
- Frequently diagnosed at later stages (stage 3-4)
- Early treatments are effective, but patients frequently (>75%) relapse with widespread metastatic disease
- Survival rate of patients with relapsed disease is extremely low
- Can we improve their prognosis?

*http://www.cncfhope.org/CNCF_FAQs

<u>SSTR2</u>

- Present on up to 90% of NB tumors
- Octreotide derivative
- High binding affinity
- Peptide
- ⁶⁸Ga-DOTATATE (NETSPOT) approved for imaging adult somatostatin-receptor positive neuroendocrine tumors
 - Not extensively evaluated in neuroblastoma
- ¹⁷⁷Lu-DOTATATE(Lutathera) approved for treating adult somatostatin-receptor positive neuroendocrine tumors
 - Not extensively evaluated in neuroblastoma

SSTR2 Receptor

Why look beyond ⁶⁸Ga-DOTATATE (NETSPOT) and ¹⁷⁷Lu-DOTATATE (Lutathera)?

68Ga-DOTATATE

- High cost of the ⁶⁸Ge/⁶⁸Ga generator
- Availability of the ⁶⁸Ge/⁶⁸Ga generator
- Low resolution of ⁶⁸Ga images
- Short half-life of ⁶⁸Ga limits the ability to do dosimetry calculations

¹⁷⁷Lu-DOTATATE

• Not a matched pair with ⁶⁸Ga-DOTATATE

PET/CT (left) and PET (right) scans of patient with intestinal NET and multiple metastases.

More lesions are seen in intestinal region with ⁶⁴Cu-DOTATATE than with ⁶⁸Ga-DOTATOC.

⁶⁸Ga

- $T_{1/2} = 68 \text{ min}$
- β⁺ Yield: 88.9%
- $\beta^+_{mean} = 836 \text{ keV}$
- Positron range: 4 mm
- Production ⁶⁸Ge/⁶⁸Ga generator, cyclotron
- Shippable? No

⁶⁴Cu

- $T_{1/2} = 12.7 h$
- β⁺ Yield: 17.6%
- $\beta^+_{mean} = 278 \text{ keV}$
- Positron range: 1 mm
- Production cyclotron
- Shippable? Yes
- Very labile

"Better" Chelator for Copper

Cu-DOTA

A.Riesen, et al. Helv Chim Acta 69, 2067 (1986)

- Cu doesn't fit within the core
- *pba* tail for binding to proteins
- Easy to make ^{64/67}Cu complex
 - (acetate buffer, RT)
- Cu(II) lost from complex *in vivo*

Donnelly et al., Dalton Trans., 2014, 43, 1386

- Derivative of diamsar
- -COOH tail for binding to proteins
- Easy to make ^{64/67}Cu complex
 - (acetate buffer, RT)
- Forms <u>very</u> stable Cu(II) complexes

ARVARD MEDICAL SCHOOL

What are the optimal properties for a therapeutic radionuclide?

- β^{-} (or α) emitter
- What is the "optimal" β energy?
- No/minimal extraneous emissions
- Half-life?
- Imagable gamma?
- Cost/availability

⁶⁷Cu

- $T_{1/2} = 2.6 d$
- β⁻ Yield: 100%
- $\beta_{\text{mean}} = 141 \text{ keV}$
- β⁻ range: 0.7 mm
- Gamma: 91 keV (7%), 93 keV (16%), 185 keV (49%)
- Production:
 - ⁶⁸Zn(p,2p)⁶⁷Cu (1.9 TBq/mg)
 - ⁶⁸Zn(γ,p)⁶⁷Cu (15 TBq/mg)

¹⁷⁷Lu

- $T_{1/2} = 6.6 d$
- β⁻ Yield: 100%
- $\beta_{mean}^{-} = 134 \text{ keV}$
- β⁻ range: 0.7 mm
- Gammas: 123 keV (6%), 208 keV (10%)
- Production:
 - ${}^{176}Lu(n,\gamma){}^{177}Lu (1.1 TBq/mg)$
 - ¹⁷⁶Yb(n,γ)¹⁷⁷Yb, ¹⁷⁷Yb → ¹⁷⁷Lu + β⁻ (3 TBq/mg)

- 1. Does ^{64/67}Cu-SARTATE accumulate in NB liver metastases?
- 2. Is treatment with ⁶⁷Cu-SARTATE as effective as treatment with ¹⁷⁷Lu-DOTATATE?
- 3. If we treat the disease early enough, can we prevent the development of metastases?
 - Prophylactic Radiotherapy

- Dorsal incision Expose the spleen
- Inject 10⁶ IMR32 (human) NB tumor cells
- Wait 2 min.
- Perform splenectomy
- Close incision
- 1-2 mm mets are present ~2 weeks after inoculation

ARVARD MEDICAL SCHOO

Imaging with ⁶⁴Cu-SARTATE

oston

drens

- Validate that the tumors have become established
- 3 weeks post-inoculation

Autoradiography and histology

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

- Treat with ⁶⁷Cu-SARTATE
- Single treatment
- 4 weeks post-inoculation
 - Two different doses
 - 9.35 MBq (250 μCi)
 - 18.5 MBq (500 μCi)
- 2 weeks post-inoculation
 - Single dose (18.5 MBq)

	4-Week Incubation			2-Week Incubation	
⁶⁷ Cu-SARTATE Dose	0 MBq (Control)	9.25 MBq	18.5 MBq	0 MBq (Control)	18.5 MBq
Mean Survival (d)	14.6±8.5	9.5±1.6	15.6±4.0	43.0±8.1	55.6±9.1
		<i>p</i> = 0.064		<i>p</i> = 0.012	

Dearling, et al., *EJNMMI Res* **11**, 20 (2021).

HARVARD MEDICAL SCHOO

Conclusions

- Can image small (<1 mm) liver mets with ⁶⁴Cu-SARTATE
- ⁶⁷Cu-SARTATE extends life in mice with smaller tumors (2 weeks)
- ⁶⁷Cu-SARTATE is more effective for treating smaller tumors (2 weeks) than larger tumors (4 weeks)

Questions

- What about ¹⁷⁷Lu-DOTATATE vs. ⁶⁷Cu-SARTATE in metastases?
- Are higher doses of ⁶⁷Cu-SARTATE even more effective in the smaller tumors?
- Are α emitters more effective than β^2 emitters for these very small lesions?
- Are antibodies better vectors than peptides?
- Is treatment more effective if started earlier, with smaller tumors?
 - Can we prevent the growth of mets? (prophylactic radionuclide therapy)

Acknowledgments

Intellectual

Jason LJ Dearling, PhD

Financial

- Clarity Pharmaceuticals
- Children's Hospital
 Radiology Foundation

Thank you for your attention!