Cu-67 Users Group Meeting

Clarity’s Targeted Copper Theranostics (TCT) platform

Shaemus Gleason, EVP US Operations
Clarity Pharmaceuticals
August 2021
Overview

Clarity Pharmaceuticals (the “Company”) is a clinical stage radiopharmaceutical company developing next-generation products to address the growing need for radiopharmaceuticals in oncology.

- Global leader in Targeted Copper Theranostics (TCT)
- Proprietary SAR Technology platform employs a superior chelator (“cage”) for copper used in the diagnosis and treatment of a wide range of cancers
- Diverse range of assets in clinical trials across a range of children and adult cancers
- Broad portfolio of patent families across platform, pipeline and products
- Strong focus on US regulatory pathway: two Investigational New Drugs (INDs) in place and two Rare Paediatric Disease Designations (RPDD) awarded, which may potentially give Clarity access to two Priority Review Vouchers (PRV)
- Highly experienced team with extremely successful track record in radiopharmaceutical development
- Superior commercialisation potential enabled by properties, manufacturing and supply of copper radioisotopes

SAR Technology Platform

Superior chelator (“cage”) for copper radioisotopes

Targeted Copper Theranostics (“TCT”)

Clarity uses a “perfect pair” of copper radioisotopes

Copper-64 (Diagnostic) OR Copper-67 (Therapy)

...the foundation for Clarity’s product portfolio

SARTATE™

Neuroblastoma (NB)

Neuroendocrine Tumours (NETs)

SAR-Bombesin Pan cancer (e.g. breast and prostate cancers)

SAR-bisPSMA Prostate cancer

Theranostic Diagnostic Theranostic Theranostic
Theranostics in practice

Theranostic approach increases the probability of treatment success by selecting patients that demonstrate uptake of the diagnostic agents to visualise their cancer prior to therapy.

Therapy (Copper-67)

Diagnostic products use positron emitting radionuclides, such as 64Cu, which are detected by Position Emission Tomography (PET) cameras.

Patients are imaged with a PET camera, which allows clinicians to identify the location of the tumours and select only those patients for Copper-67 therapy that demonstrate uptake of the product in the tumours.

Therapeutic products use beta (β^-) particle emitting radioisotopes such as 67Cu, which kill cancer cells by destroying their DNA.
Clarity’s best-in-class chelator

Until now, the utilisation of copper radioisotopes has been hampered by the inability to hold the isotopes in a suitable cage – Clarity’s chelator addressed this issue

Chelator comparison

Clarity’s SAR Technology holds copper securely

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>64Cu SARTATE™</td>
<td>64Cu DOTATE</td>
<td></td>
</tr>
<tr>
<td>LIVER</td>
<td>LIVER</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1h</td>
<td>3h</td>
<td>24h</td>
</tr>
<tr>
<td>Minimal free 64Cu in the liver (copper is not leaking from the product)</td>
<td>Increase in background in the liver indicative of free 64Cu (copper leaking from the product)</td>
<td></td>
</tr>
<tr>
<td>Excellent early and late retention of 64Cu SARTATE™ in known tumours</td>
<td>Poor late retention of 64Cu DOTATE in known tumours</td>
<td></td>
</tr>
</tbody>
</table>

- Stable products are a key criteria in drug development
- Clarity’s chelator securely holds copper when in the body, enabling better diagnostic and therapeutic outcomes
- Other chelators leak copper, which leads to suboptimal clinical outcomes and a lower level of safety
Clinical benefits of the copper isotope “perfect pair”

Highest Accuracy
Achieved by only treating those patients who show product uptake in the tumour in the diagnostic PET scan.

Copper-64 based diagnostic imaging scan
Positive for target ➔ Diagnostic 64Cu SARTATE™ PET/CT Screening ➔ Negative for target ➔ Conventional Therapy

Copper-67 based Therapy

Highest Precision
Achieved by using of the same targeting molecule with the same chemical element inside the chelator.

Diagnostic
- 64Cu SARTATE™
 - Positron emission (PET imaging) for diagnosis

Therapeutic
- 67Cu SARTATE™
 - Beta particle (β) emission for therapy

Clinical Evidence

- 64Cu SARTATE™ PET/CT Screening
- 67Cu SARTATE™ 24 hour SPECT/CT

The diagnostic and therapeutic product localise to exactly the same tumour (white arrow) in this patient with a brain tumour (meningioma).

Clarity’s clinical products

SAR Technology platform

1. SARTATE™
 - Neuroblastoma (NB)
 - Neuroendocrine Tumours (NETs)
 - Theranostic

2. SAR-Bombesin Pan Cancer
 - (e.g. breast and prostate cancers)
 - Diagnostic
 - Theranostic

3. SAR-bisPSMA Prostate Cancer
 - Theranostic
SARTATE™ CL04: $^{64}/^{67}$Cu SARTATE™

Theranostic trial in neuroblastoma

Phase I/IIa

- Dose escalation/expansion over multiple doses of therapy to paediatric patients with high-risk neuroblastoma (NCT 04023331)
- Trial status: Recruiting at Memorial Sloan Kettering Cancer Center and 3 additional U.S. clinical sites.

Neuroblastoma is one of the most aggressive childhood cancers

- Each year, there are around 800 new cases of Neuroblastoma registered in the US
- Neuroblastoma is the most common cancer to be diagnosed in the first year of life and accounts for around 15% of paediatric cancer mortality
- Approximately 84% of neuroblastomas express SSTR2

Highest Accuracy

123I MIBG
Current Standard of Care

64Cu SARTATE™
PET screening
SARTATE™ CL04: $^{64/67}$Cu SARTATE™

Theranostic trial in neuroblastoma

Phase I/IIa
- Dose escalation/expansion over multiple doses of therapy to paediatric patients with high-risk neuroblastoma (NCT 04023331)
- Trial status: Recruiting at Memorial Sloan Kettering Cancer Center and 3 additional U.S. clinical sites.

Neuroblastoma is one of the most aggressive childhood cancers
- Each year, there are around 800 new cases of Neuroblastoma registered in the US
- Neuroblastoma is the most common cancer to be diagnosed in the first year of life and accounts for around 15% of paediatric cancer mortality
- Approximately 84% of neuroblastomas express SSTR2

Highest Precision

64Cu SARTATE™ PET screening

67Cu SARTATE™ SPECT image
SAR-bisPSMA: Prostate cancer

SAR-bisPSMA has ideal product characteristics for a radiopharmaceutical

High uptake and retention in tumour

Preclinical biodistribution study demonstrating high uptake and retention of 64Cu SAR-bisPSMA in tumours with rapid clearance from non-target organs

Zia et al., 2019. Ang.Chem

Rapid kidney clearance of non-bound activity

PET images showing 64Cu SAR-bisPSMA targeting to tumours over time and rapid kidney clearance

Preclinical efficacy study with increasing activity of 67Cu SAR-bisPSMA (colours) demonstrating dose response

McInnes et al., 2020. JNM

Significant anti-tumour effect

Preclinical biodistribution study showing high uptake and retention in tumour

Pet images showing 64Cu SAR-bisPSMA targeting to tumours over time and rapid kidney clearance

‘Bis-PSMA’
The term Bis is used to denote the presence of two identical but separate complex groups in one molecule

From Beneva et al. 2015
From Zia et al. 2019
SAR-bisPSMA: SECuRE & Propeller

SECuRE: Systemic Copper theranostics in prostate cancer (NCT04868604)

A Phase I/IIa study of 64Cu SAR-bisPSMA and 67Cu SAR-bisPSMA for identification and treatment of PSMA-expressing metastatic castrate resistant prostate cancer (mCRPC)

- Theranostic multi-centre, single arm, dose escalation study with a cohort expansion planned for up to 44 patients
- Open IND with the US FDA for 64Cu SAR-bisPSMA and 67Cu SAR-bisPSMA
- The trial employs diagnostic PET imaging with 64Cu SAR-bisPSMA for selection of patients suitable for therapy cycles with 67Cu SAR-bisPSMA
- Trial recruiting

ProPELLER: PET Imaging of Participants With Confirmed Prostate Cancer (NCT04839367)

A Phase I multi-centre, blinded review, dose ranging, non-randomised study in 30 patients across Australia

- The aim of the PROPELLER study is to:
 - Determine the safety and tolerability of 64Cu SAR-bisPSMA in participants with untreated, confirmed prostate cancer and planned for radical prostatectomy
 - Compare 64Cu SAR-bisPSMA to 68Ga PSMA-11, the Standard of Care for prostate cancer imaging in Australia
 - Trial recruiting
Supply and manufacturing advantages of copper

The supply and manufacturing process of copper radioisotopes gives Clarity’s theranostic products an advantage in the commercialisation phase, enabling an efficient and streamlined distribution model.

Copper-64 (64Cu)

- **Isotope production**
 - Hundreds of patient doses can be produced daily on a single cyclotron
 - A small number of cyclotrons can cover national/regional needs for commercial products

- **Logistics**
 - 12.7 hour half life of 64Cu facilitates central manufacture of final drug products and overnight shipment to treatment centres
 - Diagnostic drug products have a shelf life of ~48 hours (compared to 4 h for 68Ga based products)

- **End users**
 - Product on demand in required volume
 - Flexibility for in time of administration and scanning yet fits into established patient flow at clinic
 - Provides the option to re-image the patient at later time points

Copper-67 (67Cu)

- **Isotope production**
 - High purity Cu-67 produced in the US on electron accelerators
 - Product supply agreements to supply the US at sufficient scale and suitable price point for later stage clinical trials and commercialisation
 - Increasing capabilities in other territories is relatively low cost

- **Logistics**
 - 2.6 day half life facilitates central manufacture of final drug products and overnight shipment to end users

- **End users**
 - No long-lived radioactive contaminants/waste issues
 - Reliable product unaffected by reactor outages
 - Domestic US supply in sufficient scale and volume to permit roll out into multiple indications

- Significant manufacturing synergies by using same isotopes of copper across the SAR technology platform
- Readily available and low-cost stable isotopes for production (64Ni for 64Cu and 68Zn for 67Cu)
- Currently, no known competition for existing supply