

Astatine-211 User Group Meeting 2021

Yawen Li, Ph.D. Assistant Professor Department of Radiation Oncology School of Medicine | University of Washington

Current ²¹¹At Production Sites

United States

- Duke University
- University of Washington
- University of Pennsylvania*
- National Institute of Health
- Texas A&M University

Europe

- Copenhagen University (Denmark)
- Arronax (France)

Asia

- Osaka University (Japan)
- QST-Takasaki (Japan)*
- QST-NIRS (Japan)
- IPCR Riken (Japan)
- Fukushima Medical University (Japan)
- Sichuan University (China)*

*Max production capacity < 1 GBq, or < 27 mCi

Yutian Feng, Michael R. Zalutsky, Nucl Med and Biol 100 (2021), in press

Potential Production Sites in Near Future

United States

- University of California - Davis
- Ionetix, Lansing, MI

Europe

- Nuclear Physics Institute of the CAS (Czech Republic)
- POLATOM (Poland)
- University of Birmingham (UK)
- IFIN-HH, Măgurele (Romania)
- Forschungszentrum Jülich (Germany)

Asia

- KIRMS (South Korea)
- RIKEN (Japan), Heavy-ion Linac

Yutian Feng, Michael R. Zalutsky, Nucl Med and Biol 100 (2021), in press

²¹¹Rn/²¹¹At Generator

- 42-MeV 6Li ions via 209Bi(6Li, 4n)211Rn, or 60-MeV 7Li ions via 209Bi(7Li, 5n) 211Rn
- 211 Rn t_{1/2} = 14.6 h, daughter 211 At reaches its maximum radioactivity at 14.5 h
- Over 80% of the maximum ²¹¹At activity will still be available after 24 h
- Useful method for distribution beyond the production site in the future

Facilities investigating the production of ²¹¹At via a ²¹¹Rn/²¹¹At generator

- Argonne National Laboratory, USA
- TRIUMP, Canada
- GANIL, France
- JAEA, Japan

Yutian Feng, Michael R. Zalutsky, Nucl Med and Biol 100 (2021), in press

Clinical Experience with Astatine-211

- Duke University (Durham, USA) – Phase I, Completed
 - Recurrent brain tumor
 - ²¹¹At-labeled anti tenascin MAb 81C6
 - Up to 347 MBq, or 9.4 mCi was administered to the resection cavity
 - Treated 18 patients
 - Low-grade neurotoxicity
 - No dose-limiting toxicity

- Gothenburg, Sweden Phase I, Completed
 - Ovarian Cancer
 - ²¹¹At-labeled MX35 (Fab)₂ antibody fragment, targeting NaPi2b
 - Up to 215 MBq/L, or 5.8 mCi/L was administered into the intraperitoneal cavity
 - Treated 12 patients
 - No signs of radiation-related toxicity
 - No decreased tolerance to relapse therapy

- University of Washington and Fred Hutch (Seattle, USA) – two ongoing Phase I/II clinical trials
 - Leukemia
 - Low toxicity HCT conditioning regimen
 - ²¹¹At-labeled anti CD45 MAb BC8-B10
 - Intravenously injected
 - Treated 43 patients
- Two new Phase I trials coming up
 - Multiple Myeloma

Challenges in Realizing ²¹¹At Targeted Alpha Therapy

- Production at clinical level is still a challenge
- Automated isolation and labeling
- Labeling chemistry
- Distribution of ²¹¹At
- Introducing more ²¹¹At reagents into clinical trials
- etc

Eric Prebys, University of California – Davis Lauren McIntosh, University of Texas A&M Mehran Makvandi, University of Pennsylvania Michael Zalutsky, Duke University Rob Emery, University of Washington Yawen Li, University of Washington

ASTATINE-211 PRODUCTION UPDATE FOR THE UNIVERSITY OF WASHINGTON

2021 DOE IP ASTATINE-211 USER MEETING

YAWEN LI ROB EMERY

8/10/2021

UW Medicine

OF MEDICINE

DEPARTMENT OF RADIATION ONCOLOGY

DOE FUNDING

UW Medical Cyclotron Facility under DOE Isotope Program Stewardship

- DOE base funding partially supporting cyclotron operations (started 2018)
- Radionuclide production under DOE guidance

Radiochemistry Division is funded through Base & R&D Funding obtained from DOE Isotope Program

- Currently providing At-211 through NIDC; supported by equipment and base funding (started 2015)
- Developing methods for producing other radionuclides through R&D funding
- Will provide other radionuclides when routine productions are achieved, and facilities are adequate for high levels of activity

YEARLY ASTATINE-211 PRODUCTION

52 GBq, or 1.41 Ci produced Jan-Jun

Year

ASTATINE-211 PRODUCTION ACTIVITIES

UW Medicine UW SCHOOL OF MEDICINE DEPARTMENT OF RADIATION ONCOLOGY

^aHIV: human immunodeficiency virus; ^bHCT: hematopoietic cell transplant;

PRODUCTION FOR THE NIDC

- Batch size:
 - Activity at shipment 0.518 GBq or 1.85 GBq (14 mCi or 50 mCi)
 - After overnight shipment, ~10% of shipped quantity at receipt due to half-life
- Shipped in near neutral solution (~pH 6.5-7.0)
- Container: plastic V-bottom vial
- Volume: <1 mL
- FedEx Overnight Shipping is used
- Local courier can be arranged if within driving distance

PRECLINICAL RESEARCH

- Improving ²¹¹At production through engineering
 - Automation of Isolation \bigcirc
 - New target station design Ο
 - New Bi target design Ο
- Developing new ²¹¹At radioimmunotherapy agents
 - Collaboration with Drs. Sandmaier, Green, \bigcirc Orozco, and Walter at the Fred Hutchinson Cancer Research Center and Dr. Park at UW
 - Blood cancers, HIV and hepatocellular Ο carcinoma

Green

Brenda Sandmaier Damian Johnnie Orozco

Roland Walter

James Park

UW Medicine UW SCHOOL OF MEDICINE DEPARTMENT OF RADIATION ONCOLOGY

ASTATINE-211 PRODUCED FOR CLINICAL TRIALS

Two ²¹¹At-BC8-B10 Phase I/II clinical trials ongoing

OF MEDICINE

DEPARTMENT OF ADIATION ONCOLOG

NCT03128034, P.I. Dr. Brenda Sandmaier, MD, started Oct, 2017 □ NCT04083183, P.I. Dr. Phuong Vo, MD, started June, 2020

NEW ASTATINE-211 CLINICAL TRIALS

 Two ²¹¹At-OKT10-B10 Phase I clinical trials for the treatment of multiple myeloma

NCT04579523

- ✓ P.I.: Dr. Sherilyn Tuazon
- ✓ Estimated enrollment: 30 patients
- ✓ Starting August 2021

NCT04466475

- ✓ P.I.: Dr. Damian Green
- ✓ Estimated enrollment: 25 patients
- ✓ Starting September 2021

THANK YOU FOR YOUR ATTENTION

Symposium on Advancements in the Chemistry of Targeted Alpha Therapy, Dec 17-18, 2021, Prince Waikiki

December 16 - 21, 2021 | Honolulu, Hawaii, USA & Virtual

Pacifichem 2021: A Creative Vision for the Future

FACILITY OVERVIEW

50MeV Cyclotron online in 1984 for Conformal Fast Neutron Therapy

- Facility grant specified Deuteron capability to replicate work at UW Nuclear Physics Lab
- PET Isotope Production Station Included as part of separate grant
- Facility Currently Supports:
 - Fast Neutron Therapy
 - Isotope Production ²¹¹At, ^{117m}Sn, ¹⁸⁶Re, ⁷²Se/⁷²As, ¹⁵⁵Tb, ²³⁰U/²²⁶Th
 - Radiation Effects Testing Protons/Neutrons SpaceX, Amazon, Blue Origin, NASA
 - Proton Therapy Research FLASH, Mini-Beam, RBE Studies

ALPHA BEAM CHALLENGES

ALPHA BEAM CHALLENGES

Beam Transport

Increased Focusing

Wire Loop Scanner

Fiber Scanner

ASTATINE-211 TARGETRY - DEVELOPMENT

Target Station Development

- Automated ejection to shielded container/remote transport system
- Automated target loading from a magazine
- Works with a variety of target materials Melted, Packed Power, Foil, Electroplated
- Target Development
 - Withstand 100 μA of 29 MeV α
 - Compatible with commercial remote retrieval system
 - Low cost, easy to manufacture
 - Target housing materials not to interfere with chemical processing
 - Minimize target housing activity for safe handling

ASTATINE-211 TARGETRY DEVELOPMENT- STATUS

Completed

- Test runs to a maximum of 16.5 μA on target, 6.75 μA/Hr, 5 mCi ²¹¹At produced
- Successful testing of automated target loading system

To Do

- Perform chemical isolation of ²¹¹At
- Finalize and test target ejection system
- Increase to maximum Alpha current ~ 50 μA
- Modify other isotope targets to fit new target station

RUN SCHEDULE – CLINICAL TRIAL/130 mCi Astatine-211

1700 -1 – Configure Accelerator for 29 MeV alphas, prepare target station

0030-0115 - Bring Accelerator up, Tune Beam

0115-0700 – Target Bombardment

0700-1000 – ²¹¹At Isolation

1000-1200 – ²¹¹At labeling on BC8-B10

1200-1400 – Quality Control

1500-1700 - Infusion

ASTATINE-211 PRODUCTION RUN CHALLENGES

7.2 Hour Half-life

Limited Staffing

Eric Dorman

- Isotope Operations Primary
- Target Design
 Bob Smith
- Target and Target Station Design/Manufacturing

Marissa Kranz

- Target Design
- CFD Modeling

Dave Argento

Nuclear Modeling

Rob Emery

Support

THANK YOU FOR YOUR ATTENTION

