

Remotely-prepared ²¹²Pb/²¹²Bi generator columns: Process overview & early performance evaluation

Matthew J. O'Hara, Lucas P. Boron-Brenner,

Jared C. Johnson, Daniel M. Cain

PNNL is operated by Battelle for the U.S. Department of Energy

2021 Lead-212 User Group Meeting, August 17, 2021

Purpose of Work

- Limited generator availability in the U.S.
 - NIDC presently supplies \leq 20 mCi generators
 - Manual generator assembly process delivers high dose to staff ✓ 1 mCi ²²⁴Ra + progeny \approx 90 mSv/h @ contact
- Generator demand is increasing
 - Requires improved assembly efficiencies w/ decreased staff dose
 - PNNL has developed a remote, automated system to prepare generator columns
 - ✓ In FY21, we demonstrated process efficacy up to ~3 mCi level
 - \checkmark In FY22, anticipate demonstration at clinical levels

6.1 MeV α (35.9%)

Part I. Automated preparation of ²²⁴Ra Generator

- **Objective 1:** Develop the process chemistry for isolating ²²⁴Ra from ²²⁸Th, and the remote assembly of ²²⁴Ra generator columns for ²¹²Pb milking
- Three fluidically-interlinked modules
 - Module 1: ²²⁴Ra purification from ²²⁸Th
 - ✓ Radionuclidicly pure ²²⁴Ra
 - \checkmark >5x10⁵ decontamination from ²²⁸Th
 - ✓ Removal of dose contributors (²¹²Pb, ²¹²Bi, & ²⁰⁸Tl)
 - ✓ Recovery and reuse of ²²⁸Th
 - ✓ >99% ²²⁸Th recovery

- **Objective 1:** Develop the process chemistry for isolating ²²⁴Ra from ²²⁸Th, and the remote assembly of ²²⁴Ra generator columns for ²¹²Pb milking
- Three fluidically-interlinked modules
 - Module 1: ²²⁴Ra purification from ²²⁸Th
 - ✓ Radionuclidicly pure ²²⁴Ra
 - ✓ Removal of dose contributors (²¹²Pb, ²¹²Bi, & ²⁰⁸Tl)
 - ✓ Recovery and reuse of 228 Th
 - Module 2: ²²⁴Ra preparation step ✓ Convert ²²⁴Ra form for optimal CatIX sorption

- **Objective 1:** Develop the process chemistry for isolating ²²⁴Ra from ²²⁸Th, and the remote assembly of ²²⁴Ra generator columns for ²¹²Pb milking
- Three fluidically-interlinked modules
 - Module 1: ²²⁴Ra purification from ²²⁸Th
 - ✓ Radionuclidicly pure ²²⁴Ra
 - ✓ Removal of dose contributors (²¹²Pb, ²¹²Bi, & ²⁰⁸Tl)
 - ✓ Recovery and reuse of ²²⁸Th
 - Module 2: ²²⁴Ra preparation step ✓ Convert ²²⁴Ra form for optimal CatIX sorption
 - Module 3: ²²⁴Ra / resin binding and column packing
 - ✓ Homogenously loaded column beds
 - ✓ High ²²⁴Ra binding yield

- **Objective 2:** Develop fluidic systems for each module
 - System engineering (hardware & software development)
- **Objective 3:** Fully integrate into an in-line, end to end system
 - Gen II system constructed; Inter-linked modules; Assembled in glove-bag adjacent to hot cell; upgraded system control electronics & software
 - Process optimization & testing
 - <1 h end-to-end, from ²²⁸Th stock insertion to packed ²¹²Pb generator column
 - ✓ Human intervention limited to ²²⁸Th stock insertion (front end) & generator column disconnect (back end)

Luer-lok check valve

Research Objectives

- **Objective 2:** Develop fluidic systems for each module
 - System engineering (hardware & software development)
- **Objective 3:** Fully integrate into an in-line, end to end system
 - Gen II system constructed; Inter-linked modules; Assembled in glove-bag adjacent to hot cell; upgraded system control electronics & software
 - Process optimization & testing
 - < <1 h end-to-end, from ²²⁸Th stock insertion to packed ²¹²Pb generator column
 - Human intervention limited to ²²⁸Th stock insertion (front end) & generator column disconnect (back end)

Catch bed ²²⁴Ra distributed bed

Part II. Auto-packed ²¹²Pb generator performance

Preliminary testing performed up to ~2.8 mCi

²¹²Pb / ²¹²Bi generator column performance

- Simple generator column milking process:
 - I mL 2 M HCI, followed by 1 mL H₂O flush & air for storage ✓ Elutes ²¹²Pb & ²¹²Bi together
 - Flow rate = 1 mL/min

Reduction in column activity -Pre-Milk Post-Milk

- Aged the milked products to determine ²²⁴Ra content
 - **Simple** milking = 1 mL 2M HCI
 - Observed consistent ²²⁴Ra fraction (~0.45%) in ²¹²Pb product

- Aged the milked products to determine ²²⁴Ra content
 - **Simple** milking = 1 mL 2M HCI
 - Observed consistent ²²⁴Ra fraction (~0.45%) in ²¹²Pb product

- Aged the milked products to determine ²²⁴Ra content
 - Simple + Catch milking = 1 mL 2M HCI
 - Observed >10x increase in ²¹²Pb product purity

Simple milk + catch col.

C

2

- Aged the milked products to determine ²²⁴Ra content
 - Simple + Catch milking = 1 mL 2M HCl
 - Observed >10x increase in ²¹²Pb product purity

Simple milk + catch col.

2

- Replicate generator comparison: Activity fraction of ²²⁴Ra in milked ²¹²Pb
 - Simple milk mean: (4.5 ± 1.2)x10⁻³ (n=6)
 - Simple milk + catch col. mean: $(3.6 \pm 2.7) \times 10^{-4} (n=8)$

²¹²Pb yield in 1mL milked fraction

- ²¹²Pb yield in 1 mL 2 M HCl milking aliquot
 - Simple milk yield = $93.7 \pm 1.3\%$ (n=6)
 - \checkmark (2M HCI / (2M HCI + DIW rinse)
 - Simple milk + catch col. yield = $90.6 \pm 5.8\%$ (n=8)

 \checkmark (2M HCI / (2M HCI + DIW rinse + catch col.)

Pacific Sequential ²¹²Bi / ²¹²Pb elutions: 80 Northwest 50 50 NATIONAL LABORATORY 60

- ²¹²Bi eluted in 0.5 M HCl prior to ²¹²Pb elution
 - ²¹²Bi / ²¹²Pb re-equilibrium in ~0.17 days (~4 h)

Sequential ²¹²Bi / ²¹²Pb elutions: Simple + catch col. milking

- ²¹²Bi eluted in 0.5 M HCl prior to ²¹²Pb elution
 - ²¹²Bi / ²¹²Pb re-equilibrium in ~0.17 days (~4 h)

- New fluidic system for auto-preparation of generators
 - System starts with ²²⁸Th stock; ends with packed generator column
 - Elapsed end-to-end time of ~1 h
 - Dramatic reduction in dose to staff
- Current low-mCi test generators are indicating good performance to date
 - ²²⁸Th decontamination factor >5x10⁵ (ongoing evaluation)
 - Pb yields (>90% in 1mL 2M HCI)
 - Sequential Bi (0.5M HCI) / Pb (2M HCI) elutions
 - Radionuclidic purity (~0.04% ²²⁴Ra breakthrough)
 - Dispensation of ²¹²Pb product in pH 6 NaOAc buffer (not shown)
- In FY22, anticipate process scale-up to at least 20 mCi
 - Will continue milking performance testing
 - May seek end-user evaluations via NIDC

Acknowledgements

 This research was supported by the U.S. Department of Energy Isotope Program, managed by the Office of Science.

> Matt O'Hara (509) 375-5579

- For more info., contact:

 - Matthew.OHara@pnnl.gov

Questions

