

Cu-67 DOE Isotope Program User Group Meeting

David A. Rotsch, Argonne National Laboratory

CU-67 AGENDA AUGUST 24, 2021, 1 PM EDT

1:00 – 1:10 PM	Dave Rotsch, Argonne National Laboratory (Moderator) Introduction	1:55 – 2:10 PM	Jennifer Bartels, University of Alabama at Birmingham
1:10 – 1:25 PM	Jack Shively, City of Hope	2:10– 2:25 PM	Sheamus Gleason, Clarity Pharmaceuticals
1:25 – 1:40 PM	Alan Packard, Boston Children's Hospital	2:25 – 3:00 PM	Moderated Q&A Segment
1:40 – 1:55 PM	Brian Zeglis, Hunter College		

Theranostic approach

Personalized medicine through diagnostic and therapeutic

Diagnostic

- SPECT and PET
- ^{43,44}Sc, ⁶⁴Cu, ⁶⁸Ga, ⁸²Rb,
 ^{99m}Tc, ¹³²Ce

Therapeutic

- Alpha, Beta, Auger electrons
- ⁹⁰Y, ^{117m}Sn, ^{188,191,193,195m}Pt,
 ²¹¹At, ²¹²Pb, ^{212/213}Bi,
 ²²³Ra, ²²⁵Ac, ¹⁷⁷Lu

Both (Theranostic)

- Real-time monitoring of treatment
- 47Sc, ⁶⁷Cu, ^{186,188,189}Re

• Theranostic

- t_{1/2} = ~2.58 days
- Average β^{-1} : 141 keV
- γ: 184.6 keV (49%)
- Decays to stable Zn
- Match pair with ⁶⁴Cu
 - PET
- Uses: treatment of non-Hodgkins lymphoma, neuroblastomas, and other cancers
- Chelation chemistry well-known due to ⁶⁴Cu PET-analogue

Multi-dentate Bifunctional Chelators

1,4,8,11tetraazacyclotetradecane-,1,4,8-tetraacetic acid

OH

Diamsar 3,6,10,13,16,19hexaazbicyclo[6.6.]eicosane-1,8diame

CB-TE2A 4,11-bis-(carboxymethyl)-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane

Copper-67 Production using p and n

- Production methods
 - ⁶⁸Zn(p,2p)⁶⁷Cu, ⁷⁰Zn(p,a)⁶⁷Cu, ⁶⁷Zn(n,p)⁶⁷Cu, and heavy-ion fragmentation (FRIB Harvesting)
- Reported specific activities
 - 2-20 Ci/mg (74-740 GBq/mg)
 - <20 Ci/mg has demonstrated radiolabeling challenges
- ⁶⁴Cu is readily available, so why has ⁶⁷Cu been so difficult?
 - Production rates are relatively low compared to ⁶⁴Cu
 - Targetry is challenging
 - Zn melting point is low, ~420 °C ($Ni_{(m)} = 1,455$ °C)
 - Zn wets and alloys with most metals (targetry considerations are difficult)
 - Cu is ubiquitous building/construction material

Photonuclear Production ⁶⁷Cu

- Bremsstrahlung: 68 Zn(γ ,p) 67 Cu and 71 Zn(γ ,a) 67 Cu
 - 68 Zn(y,p) 67 Cu 12 MeV threshold, peak at ~20 MeV, σ = 26 mb (~12 mb TENDL)
 - 71 Zn(γ ,a) 67 Cu 15 MeV threshold, peak at 20 MeV, σ = 0.7 mb
- ⁶⁸Zn(γ,p)⁶⁷Cυ

- Enriched ⁶⁸Zn ingot
 - Enriched targets eliminates co-produced radioisotopes
 - ⁶⁸Zn 18.45% abundant
 - Zn targetry considerations
 - No metal contact
 - Target temperature (melting point ~420 °C)

Koning, A.J., et al. *TENDL-2014: TALYS-based evaluated nuclear data library*. **2014**, Available from: ftp://ftp.nrg.eu/pub/www/talys/tendl2014/gamma_html/gamma.html

Low Energy Accelerator Facility (LEAF)

- High energy electrons are bombarded on convertor
- Electrons brake on the convertor and produce Bremsstrahlung photons
- Photons interact with the target primarily via (y,n), (y,p), and (y,a)

Isotope Program

U.S. Department of Energy

Photonuclear Production of ${}^{67}Cu$, ${}^{68}Zn(\gamma,p){}^{67}Cu$

- Certificate of Analysis
 - 2 Ci at end of bombardment (EOB)
 - ~1.2 Ci at time of Shipping (806 available with NIDC 24-hr decay allowance)
 - Shipped as solid CuCl₂
 - Identified by 93 and 184 keV gamma emissions
 - ≥99% radionuclide purity
 - ≥50 Ci/mg (⁶⁷Cu/total Cu at EOB)

Batch	SA (Ci/mg @ EOB,	TETA (mCi/nmole @	DOTA (mCi/nmole @	MeCOSAR (mCi/nmole @
	⁶⁷ Cu mass corrected)	time of labeling)	time of labeling)	time of labeling)
Average	101.9	1.38	1.18	2.32

Radiolabeling

Apparent Molar Activity (AMA)

• Radiolabeling occurs ~1 half-life after EOB.

Conditions

- $0.5 M NH_4 COOH (pH = 5.5)$
- 40-90 °C
- 30 minutes
- EDTA added for MeCOSar after labeling

TETA 1,4,8,11tetraazacyclotetradecane-,1,4,8-tetraacetic acid

DOTA 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid

MeCOSar 5-(8-methyl-3,6,10,13,16,19-hexaazabicyclo[6.6.6]icosan-1-ylamino)-5oxopentanoic acid

Batch	SA (Ci/mg @ EOB, ⁶⁷ Cu mass corrected)	TETA (mCi/nmole @ time of labeling)	DOTA (mCi/nmole @ time of labeling)	MeCOSAR (mCi/nmole @ time of labeling)
Average	101.9	1.38	1.18	2.32
			\sim	

.OH

DC NATIONAL ISOTOPE DEVELOPMENT CENTER

⁶⁷Cu as a Theranostic

11

Comparison of ⁶⁷Cu SPECT/CT images acquired using the low-energy high-resolution (LEHR) collimator and the medium energy (ME) collimator.

MJ Merrick, et. al, "*Imaging and Dosimetric Characteristics of* ⁶⁷*Cu*" *Phys. Med. Biol.* **2021**, 66 035002, https://doi.org/10.1088/1361-6560/abca52

Work performed by: S. Graves M. Merrick

Thank You!

For more information: <u>https://isotopes.gov/</u>

⁶⁷Cu test batch recipient responses

- 51.23 Ci/mg (⁶⁷Cu/total Cu, @ EOB)
- "Very nice product! We're looking forward to doing more studies with Cu-67. Please keep us posted on the next time you are producing material, and we'll plan a larger mouse study."
- "In summary, we were very happy with our experience, and are pleased to see that high quality Cu-67 may soon be more widely available..."
- "The Cu-67 labeled beautifully... very interested in planning animal experiments with Cu-67."

Impurity ratio vs specific activity

• ~200 Ci/mg ${}^{64}Cu = ~40$ Ci/mg ${}^{67}Cu = ~18$ Ci/mg ${}^{177}Lu$

Cold atoms/Hot atoms vs Specific Activity (Ci/mg)

U.S. DEPARTMENT OF

IERG

 \mathbf{i}

U.S. Department of Energy

CU-67 AGENDA AUGUST 24, 2021, 1 PM EDT

1:00 – 1:10 PM	Dave Rotsch, Argonne National	1:55 – 2:10 PM	Jennifer Bartels, University of Alabama
	Laboratory (Moderator) Introduction		at Birmingham
1·10 – 1·25 PM	lack Shively, City of Hope	2:10– 2:25 PM	Sheamus Gleason, Clarity Pharmaceuticals
1.10 – 1.23 HM	Jack Sinvery, city of hope		
1:25 – 1:40 PM	Alan Packard, Boston Children's Hospital	2:25 – 3:00 PM	Moderated Q&A Segment
1:40 – 1:55 PM	Brian Zeglis, Hunter College		

