Dual-Targeting: PSMA

Neil H Bander, MD
Bernard & Josephine Chaus Professor of Urologic Oncology
Weill-Cornell Medicine
Disclosure

• NHB is an Inventor on patents related to this presentation and assigned to Cornell University

• NHB is a paid advisor and shareholder of Convergent Therapeutics, Inc, the company to which this IP has been licensed for further development.
Tumor Therapy with Targeted Atomic Nanogenerators

Michael R. McDevitt,1 Dangshe Ma,1 Lawrence T. Lai,1 Jim Simon,2 Paul Borchardt,1 R. Keith Frank,2 Karen Wu,1 Virginia Pellegrini,1 Michael J. Curcio,1 Matthias Miederer,1 Neil H. Bander,3 David A. Scheinberg1*

A single, high linear energy transfer alpha particle can kill a target cell. We have developed methods to target molecular-sized generators of alpha-emitting radionuclides to the inside of cancer cells using actinium-225 coupled to internalizing monoclonal antibodies. In vitro, these constructs specifically killed leukemia, lymphoma, breast, ovarian, neuroblastoma, and prostate cancer cells at becquerel (picocurie) levels. Injection of single doses of the constructs at kilobecquerel (nanocurie) levels into mice bearing solid prostate carcinoma or disseminated human lymphoma induced tumor regression and prolonged survival, without toxicity, in a substantial fraction of animals. Nanogenerators targeting a wide variety of cancers may be possible.

Alpha particles are high-energy, high linear energy transfer helium nuclei capable of strong, yet selective, cytotoxicity (1). A single atom emitting an alpha particle can kill a target cell (2). Monoclonal antibodies conjugated to alpha

1Molecular Pharmacology and Therapeutics Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.
2The Dow Chemical Company, Freeport, TX 77541, USA.
3Department of Urology, New York Presbyterian Hospital-Weill Medical College of Cornell University, 525 East 68th Street, New York, NY 10021, USA.
*To whom correspondence should be addressed. E-mail: d-scheinberg@ski.mskcc.org

particle-emitting radionuclides (213Bi and 211At) are starting to show promise in radioimmunotherapy (3, 4). The conjugates [213Bi]-HuM195 (2) and [213Bi]J591 (5, 6) have been used in preclinical models of leukemia and prostate cancer, respectively, and in a phase I human clinical trial, [213Bi]HuM195 was active against leukemia, with no significant toxicity (3). Astatine-211–labeled antibodies to tenascin (anti-tenascin) have been used clinically to treat malignant gliomas in humans (4) in a phase I trial. For clinical use of 211Bi, we developed a therapeutic dose-level 225Ac211Bi generator device, approximately 1 cm by 6 cm in size,
PSMA-617-Ac225 exceptional response
PSMA-617-Ac225 exceptional response...

Salivary gland toxicity

High renal exposure

Haberkorn. Heidelberg
PSMA mAb J591 Bio-distribution

- Vascular system
- Liver
- Large bowel
J591-Ac225 Single Ascending Dose Phase 1

Baseline Demographics (n=32)†

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median (range)</td>
<td>69.5 (52-89)</td>
</tr>
<tr>
<td>PSA, median (range)</td>
<td>149.1 (4.8-7168)</td>
</tr>
<tr>
<td>CALGB (Halabi) Prognostic Group, n (%)</td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>1 (3.1%)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>8 (25%)</td>
</tr>
<tr>
<td>High</td>
<td>23 (71.9%)</td>
</tr>
<tr>
<td>Sites of metastases, n (%)</td>
<td></td>
</tr>
<tr>
<td>Bone</td>
<td>31 (96.9%)</td>
</tr>
<tr>
<td>Lymph node</td>
<td>28 (87.5%)</td>
</tr>
<tr>
<td>Liver</td>
<td>6 (18.8%)</td>
</tr>
<tr>
<td>Lung</td>
<td>5 (15.6%)</td>
</tr>
<tr>
<td>Prior therapy, n (%)</td>
<td></td>
</tr>
<tr>
<td>\geq 2 potent AR inhibitors</td>
<td>25 (78.1%)</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td>20 (62.5%)</td>
</tr>
<tr>
<td>Radium-223</td>
<td>9 (28.1%)</td>
</tr>
<tr>
<td>Sipuleucel-T</td>
<td>12 (37.5%)</td>
</tr>
<tr>
<td>PSMA-RL-Lu177</td>
<td>14 (43.8%)</td>
</tr>
</tbody>
</table>

Cohort Treatment Dose n

<table>
<thead>
<tr>
<th>Cohort</th>
<th>KBq/Kg</th>
<th>μCi/Kg</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.3</td>
<td>0.36</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>26.7</td>
<td>0.72</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>40.0</td>
<td>1.08</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>53.3</td>
<td>1.44</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>66.7</td>
<td>1.80</td>
<td>6*</td>
</tr>
<tr>
<td>6</td>
<td>80.0</td>
<td>2.16</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>93.3</td>
<td>2.52</td>
<td>16</td>
</tr>
</tbody>
</table>

†One pt enrolled in both dose-escalation and expansion

Dose Escalation Results:

- 1 of 6 in Cohort 6 (80 KBq/Kg) had DLT (Gr 4 anemia and Gr 4 thrombocytopenia)
- 0 of 6 in Cohort 7 had DLT
- MTD not reached
- RP2D = 93.3 KBq/Kg

Tagawa et al. ASCO 2021
PSA Response

- 69% experienced any PSA decline
- 44% with >50% PSA decline

Design:

- 32 patients; NO PSMA imaging pre-selection used
- One dose only; 7 escalating dose levels
- Heavily Pre-treated patients (eg, ARi, chemo)
- 44% relapsed/refractory to prior PSMA-617-Lu177
- 28% relapsed/refractory to prior Ra223

Results:

- Well-tolerated
- **PSA$_{50}$ response = 14/32 (44%)**
- 1 DLT (platelets), MTD not reached
- 12 grade 1 xerostomia, 7 had prior 617-Lu177
- Multi-dose trial underway

Tagawa et al. ASCO 2021
Multiple ascending dose J591-Ac225
Phase 1b / 2a

Key Inclusion:
- Progressive mCRPC
- Post ARSI
- Post taxane (or ineligible, refuse)

Objectives:
- Safety
- PSA50

Secondary:
- Radiographic Response Rate

- Short, dose-condensed course: J591-Ac225 Day 1 & 15
 N=25

- J591-Ac225 4 x 6-week cycles
 N=25

- Expansion at RP2D

ClinicalTrials.gov Identifier: NCT04506567
Both PSMA Small Molecule Ligand (SML) and J591 can bind PSMA/tumor simultaneously and additively.
PSMA SML and J591 Bio-distributions and AE profiles are non-overlapping
Weill-Cornell’s differentiated approach

WCM recognized potential benefit of dual-targeting with Ab + RL (small molecule ligands)

- Both Ab and RL converge on the cancer
- No overlapping toxicity on normal tissue
- Each agent can carry a different payload

Others focus on EITHER RLs OR Abs

Substantially better anti-tumor efficacy with NO added side effects
PSMA RL plus J591=> SYNERGISTIC uptake
Antibody + RL targeting
Delivers SYNERGISTIC dose to tumor
Animal therapy study:
Synergy of alpha / beta RNT
Three Layers of Benefit from dual-targeted approach

1. Convergent Targeting => *additive dose to tumor* without increased toxicity

2. Ab improves uptake and retention of RL by tumor
 • Resulting dose to tumor is greater than sum of the parts

3. Addition of α to β radionuclide therapy:
 • Provides the additional potency & precision of α
 • Solves the limitations of RL-β treatment of small volume lesions

Benefit of Ac225 plus Lu177 combination
One RNT compensates for the other

The smaller the lesion, the more poorly it retains SML RNT
This is exacerbated as Lu177 delivers radiation outside the tumor margin of small volume lesions
Shorter range and more powerful effect of Ac225 overcomes this problem

<table>
<thead>
<tr>
<th>Sphere diameter (µm)</th>
<th>90Y</th>
<th>177Lu</th>
<th>111In</th>
<th>161Tb</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000</td>
<td>563</td>
<td>140</td>
<td>33.2</td>
<td>190</td>
</tr>
<tr>
<td>5,000</td>
<td>347</td>
<td>135</td>
<td>32.2</td>
<td>183</td>
</tr>
<tr>
<td>2,000</td>
<td>152</td>
<td>119</td>
<td>29.6</td>
<td>163</td>
</tr>
<tr>
<td>1,000</td>
<td>77.7</td>
<td>96.3</td>
<td>25.7</td>
<td>135</td>
</tr>
<tr>
<td>500</td>
<td>39.2</td>
<td>69.2</td>
<td>19.4</td>
<td>104</td>
</tr>
<tr>
<td>200</td>
<td>15.8</td>
<td>38.6</td>
<td>11.2</td>
<td>72.3</td>
</tr>
<tr>
<td>100</td>
<td>7.93</td>
<td>22.6</td>
<td>8.44</td>
<td>55.9</td>
</tr>
<tr>
<td>50</td>
<td>3.92</td>
<td>13.0</td>
<td>7.15</td>
<td>41.8</td>
</tr>
<tr>
<td>20</td>
<td>1.56</td>
<td>6.11</td>
<td>5.95</td>
<td>25.4</td>
</tr>
<tr>
<td>10</td>
<td>0.77</td>
<td>3.62</td>
<td>4.96</td>
<td>17.7</td>
</tr>
</tbody>
</table>
Benefit of adding α to β radionuclide therapy
RL-Lu177 undertreats small volume lesions

“The results of multi-modality imaging can be summarised as demonstrating remarkable responses in nodal and visceral disease, but a pattern of ultimate progression in new sites of osseous disease or marrow infiltration. We postulate that 177Lu is less effective in targeting microscopic deposits of marrow disease” (pg 832)

Hofman MS* et al. Lancet Oncol. 2018 19:825-833

“25% of patients showed new LM [Lymph Node mets] despite response of existing lesions.”

“…three patients had a partial response, whilst four patients exhibited progressive disease due to new lesions.”

“After an initial response, patients predominantly progressed, with new focal or diffuse areas of involvement in the bone…”

Dual α (Ac225) + β (Lu177) radionuclide therapy
Provides potency & precision of α
Combining $\alpha + \beta$ particles extends “curability range”

Phase I/II study of 225Ac-J591 plus 177Lu-PSMA-I&T for progressive metastatic Castration-Resistant Prostate Cancer

In progress

ClinicalTrials.gov Identifier: NCT04886986