Dual-Targeting: PSMA

Neil H Bander, MD

Bernard & Josephine Chaus Professor of Urologic Oncology Weill-Cornell Medicine

Disclosure

- NHB is an Inventor on patents related to this presentation and assigned to Cornell University
- NHB is a paid advisor and shareholder of Convergent Therapeutics, Inc, the company to which this IP has been licensed for further development.

Tumor Therapy with Targeted Atomic Nanogenerators

Michael R. McDevitt,¹ Dangshe Ma,¹ Lawrence T. Lai,¹ Jim Simon,² Paul Borchardt,¹ R. Keith Frank,² Karen Wu,¹ Virginia Pellegrini,¹ Michael J. Curcio,¹ Matthias Miederer,¹ Neil H. Bander,³ David A. Scheinberg^{1*}

A single, high linear energy transfer alpha particle can kill a target cell. We have developed methods to target molecular-sized generators of alpha-emitting isotope cascades to the inside of cancer cells using actinium-225 coupled to internalizing monoclonal antibodies. In vitro, these constructs specifically killed leukemia, lymphoma, breast, ovarian, neuroblastoma, and prostate cancer cells at becquerel (picocurie) levels. Injection of single doses of the constructs at kilobecquerel (nanocurie) levels into mice bearing solid prostate carcinoma or disseminated human lymphoma induced tumor regression and prolonged survival, without toxicity, in a substantial fraction of animals. Nanogenerators targeting a wide variety of cancers may be possible.

Alpha particles are high-energy, high linear energy transfer helium nuclei capable of strong, yet selective, cytotoxicity (I). A single atom emitting an alpha particle can kill a target cell (2). Monoclonal antibodies conjugated to alpha

ATT

*To whom correspondence should be addressed. Email: d-scheinberg@ski.mskcc.org particle-emitting radionuclides (²¹³Bi and ²¹¹At) are starting to show promise in radioimmunotherapy (3, 4). The conjugates [²¹³Bi]-HuM195 (2) and [²¹³Bi]J591 (5, 6) have been used in preclinical models of leukemia and prostate cancer, respectively, and in a phase I human clinical trial, [²¹³Bi]HuM195 was active against leukemia, with no significant toxicity (3). Astatine-211-labeled antibodies to tenascin (anti-tenascin) have been used clinically to treat malignant gliomas in humans (4) in a phase I trial. For clinical use of ²¹³Bi, we developed a therapeutic dose-level ²²⁵Ac/²¹³Bi generator device, approximately 1 cm by 6 cm in size,

¹Molecular Pharmacology and Therapeutics Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA. ²The Dow Chemical Company, Freeport, TX 77541, USA. ³Department of Urology, New York Presbyterian Hospital-Weill Medical College of Cornell University, 525 East 68th Street, New York, NY 10021, USA.

PSMA-617-Ac²²⁵ exceptional response

Patient-B radical prostateectomy radiotherapy of lymphnode metastasis LHRH (leuprorelin) LHRH (leuprorelin) + Bicalutamide 150mg/die Docetaxel (11 cycles) Cabazitaxel (10 cycles) Arbiraterone Enzalutamide - NOT TOLERATED

Haberkorn. Heidleberg

Salivary gland toxicity

High renal exposure

Haberkorn. Heidleberg

PSMA-617-Ac²²⁵ exceptional response...

PSMA mAb J591 Bio-distribution

J591-Ac²²⁵ Single Ascending Dose Phase 1

Baseline Demographics (n=32) [¥]						
Age, median (range) 69.5 (52-89)						
PSA, median (range) 149.1 (4.8-71						
CALGB (Halabi) Prognostic Group, n (%)						
Low	1 (3.1%)					
Intermediate	8 (25%)					
High	23 (71.9%)					
Sites of metastases, n (%)						
Bone	31 (96.9%)					
Lymph node	28 (87.5%)					
Liver 6 (18.8%)						
Lung 5 (15.6%)						
Prior therapy, n (%)						
\geq 2 potent AR inhibitors	25 (78.1%)					
Chemotherapy	20 (62.5%)					
<mark>Radium-223</mark>	<mark>9 (28.1%)</mark>					
Sipuleucel-T	12 (37.5%)					
PSMA-RL-Lu ¹⁷⁷	<mark>14 (43.8%)</mark> ¥ ₀					

Cohort	Treatme		
	KBq/Kg	q/Kg μCi/Kg	
1	13.3	0.36	1
2	26.7	0.72	1
3	3 40.0 1.08		1
4	4 53.3 5 66.7		1 6*
5			
6	6 80.0 2.16		6
7	93.3	2.52	16

*Backfilled to gain additional info

Dose Escalation Results:

- 1 of 6 in Cohort 6 (80 KBq/Kg) had DLT (Gr 4 anemia and Gr 4 thrombocytopenia)
- 0 of 6 in Cohort 7 had DLT
- MTD not reached
- RP2D = 93.3 KBq/Kg

Tagawa et al. ASCO 2021

[¥]One pt enrolled in both dose-escalation and expansion

PSA Response

- 69% experienced any PSA decline
- 44% with >50% PSA decline

Design:

- 32 patients; NO PSMA imaging pre-selection used
- One dose only; 7 escalating dose levels
- Heavily Pre-treated patients (eg, ARi, chemo)
- 44% relapsed/refractory to prior PSMA-617-Lu¹⁷⁷
- 28% relapsed/refractory to prior Ra²²³

Cohort 1 - Black
Cohort 2 - Light Green
Cohort 3 - Green
Cohort 4 - Blue
Cohort 5 - Yellow
Cohort 6 - Dark Yellow
Cohort 7 - Red

Results:

- Well-tolerated
- PSA₅₀ response = 14/32 (44%)
- 1 DLT (platelets), MTD not reached
- 12 grade 1 xerostomia, 7 had prior 617-Lu¹⁷⁷
- Multi-dose trial underway

Tagawa et al. ASCO 2021

Multiple ascending dose J591-Ac²²⁵ Phase 1b / 2a

ClinicalTrials.gov Identifier: NCT04506567

Both PSMA Small Molecule Ligand (SML) and J591 can bind PSMA/tumor simultaneously and additively

PSMA SML and J591 Bio-distributions and AE profiles are non-overlapping

Weill-Cornell's differentiated approach

Others focus on EITHER RLs OR Abs

OR

WCM recognized potential benefit of dual-targeting with

Ab + RL (small molecule ligands)

- Both Ab and RL converge on the cancer
- No overlapping toxicity on normal tissue
- Each agent can carry a different payload

Substantially better anti-tumor efficacy with NO added side effects

PSMA RL plus J591=> SYNERGISTIC uptake

Antibody + RL targeting Delivers SYNERGISTIC dose to tumor

Animal therapy study: Synergy of alpha / beta RNT

Three Layers of Benefit from dual-targeted approach

- 1. Convergent Targeting => *additive dose to tumor* without increased toxicity
- 2. Ab **improves uptake and retention of RL** by tumor
 - Resulting dose to tumor is greater than sum of the parts
- 3. Addition of α to β radionuclide therapy:
 - Provides the additional potency & precision of α
 - Solves the limitations of RL-**β** treatment of small volume lesions

Benefit of Ac²²⁵ plus Lu¹⁷⁷ combination One RNT compensates for the other

	Sphere di	iameter	Absorbed energy (keV per decay)			
	(μm)		90Y	¹⁷⁷ Lu	¹¹¹ ln	¹⁶¹ Tb
	10,000	56	3	140	33.2	190
ſ	5,000	34	7	135	32.2	183
	2,000	15	2	119	29.6	163
	1,000	7	7.7	96.3	25.7	135
	500	3	9.2	69.2	19.4	104
4	200	1	5.8	38.6	11.2	72.3
	100		7.93	22.6	8.44	55.9
	50		3.92	13.0	7.15	41.8
	20		1.56	6.11	5.95	25.4
L	10		0.77	3.62	4.96	17.7

- The smaller the lesion, the more poorly it retains SML RNT
- This is exacerbated as Lu¹⁷⁷ delivers radiation outside the tumor margin of small volume lesions
- Shorter range and more powerful effect of Ac²²⁵ overcomes this problem

below PET visibility threshold

³ Benefit of adding α to β radionuclide therapy

RL-Lu¹⁷⁷ undertreats small volume lesions

"The results of multi-modality imaging can be summarised as demonstrating remarkable responses in nodal and visceral disease, but a pattern of ultimate progression in new sites of osseous disease or marrow infiltration. We postulate that ¹⁷⁷Lu is less effective in targeting microscopic deposits of marrow disease" (pg 832)

Hofman MS* et al. Lancet Oncol. 2018 19;825-833

"25% of patients showed new LM [Lymph Node mets] despite response of existing lesions."

Taeger P et al. J Nucl Med 2018 59;Suppl 1:523

"...three patients had a partial response, whilst four patients exhibited progressive disease due to **new lesions**."

Gafita A et al. J Nucl Med 2019 60:644-8

"After an initial response, patients predominantly progressed, with new focal or diffuse areas of involvement in the bone..." Violet J et al. J Nucl Med 2020; 61:857–865 Dual α (Ac²²⁵) + β (Lu¹⁷⁷) radionuclide therapy Provides potency & precision of α Combining $\alpha + \beta$ particles extends "curability range"

Source: O'Donaghue J et al. Relationships between Tumor Size and Curability for Uniformly Targeted Therapy with Beta-Emitting Radionuclides . J Nuci Med. 1995;36:1902-1909

Any given radiopharm has

its own optimal curability

•

Phase I/II study of ²²⁵Ac-J591 plus ¹⁷⁷Lu-PSMA-I&T for progressive metastatic Castration-Resistant Prostate Cancer

In progress

ClinicalTrials.gov Identifier: NCT04886986