

Dosimetry & treatment planning for Ac-225 and other alpha-emitters

George Sgouros, Ph.D. Director of Radiological Physics Division (RPD) Professor, Department of Radiology, Johns Hopkins University

JOHNS HOPKINS SCHOOL of MEDICINE

Disclosures

- Consultant
 - Abdera Therapeutics, Bayer, Clovis, Precirix, RayzeBio
- Scientific Advisory Board
 - Orano Med
- Founder, Stakeholder
 - Radiopharmaceutical Imaging and Dosimetry, LLC (Rapid)

Radioactive chemo

Imaging, dosimetrybased delivery

- Imaging
 - Advanced recon
 - New instruments
- Macro to micro (M2µ)
 - Microscale S values
 - Microscale apportionment factors
- RBE
 - In vitro, In vivo
- Treat canine OS

Imaging – Advanced reconstruction

Eric Frey, Rapid & Hopkins

JOHNS HOPKINS

SCHOOL of MEDICINE

Imaging – Advanced reconstruction 5 coronal slices, 144 h, 5 iterations, 12 subsets per iteration, logarithmic grayscale

Eric Frey, Rapid & Hopkins

JOHNS HOPKINS

SCHOOL of MEDICINE

Imaging – Advanced reconstruction

Ra-223 Errors in Organ Activity Estimates

	4 h	24 h	72 h	144 h	
Small intestine	$-3.8 \pm 0.6\%^{1}$	-	-	-	
Upper large intestine	-	9.7 ± 0.6%	8.4 ± 0.8%	6.5 ± 1.7%	
Lower large intestine	-	11.4 ± 1.7%	12.8 ± 1.7%	12.6 ± 1.8%	
Bones	-7.3 ± 0.5%	-7.0 ± 0.7%	-9.0 ± 0.7%	-12.9 ± 1.0%	

20 iterations, 12 subsets Uncertainties are COVs over 50 simulated noise realizations True VOIs are assumed known

Eric Frey, Rapid & Hopkins

Imaging – build a new instrument

Fig. 4: An energy spectrum collected with an Ac-225 solution and a 3-D CZT imaging spectrometer having an active detector volume of 4 cm x 4 cm x 1 cm in size. Note that the spectrum includes all types of interactions (single photoelectric, Compton scattering, charge-sharing etc.) physically happened inside the detector.

Ling-Jian Meng, UIUC

Macro 2 micro – S values

Fig 1. Source / target regions for liver at both the macroscale and microscale in the MIRD schema.

Wesley Bolch UFL, Rob Hobbs

Table 1. Murine microscale S values for the ²²⁵Ac decay

 chain for both the unit and compartmental nephron model.

²²⁵ Ac	S-value (unit) (Gy/Bq-s)	Absorbed energy (MeV/decay)	Absorbed Fraction	S-value (compartment) (Gy/Bq-s)
glc ← glc	5.74E-04	4.29	0.721	1.53E-07
glc ← prt	5.20E-06	1.12	0.188	1.39E-09
prtc ← glc	2.33E-04	0.05	0.009	1.86E-09
prtc ← prtc	6.82E-04	4.37	0.734	5.44E-09
prtc ← prtI	6.85E-04	4.39	0.737	5.46E-09
prtc ← prts	6.84E-04	4.38	0.736	5.45E-09
kid ← kid	-	5.94	0.998	3.22E-09
$cor \leftarrow cor$	-	5.40	0.908	4.44E-09

Table 2. Human microscale S values for the ²²⁵Ac decaychain for both the unit and compartmental nephron model.

²²⁵ Ac	S-value (unit) (Gy/Bq-s)	Absorbed energy (MeV/decay)	Absorbed Fraction	S-value (compartment) (Gy/Bq-s)
glc ← glc	5.70E-05	5.24	0.881	1.85E-10
glc ← prt	5.39E-06	0.75	0.126	6.08E-13
prtc ← glc	3.02E-05	0.096	0.016	3.12E-12
prtc ← prtc	4.54E-05	1.28	0.215	4.69E-12
prtc ← prtI	4.49E-05	1.76	0.296	4.64E-12
prtc ← prts	4.52E-05	1.53	0.257	4.66E-12
kid ← kid	-	5.95	1.000	3.17E-12
cor ← cor	-	5.95	1.000	4.82E-12

Macro 2 micro – Apportionment factors

Rob Hobbs, Anders Josefsson

Fig 4. Schema of the apportionment paradigm. Whole organ activity coefficients are measured as a function of time for the whole organ, or portion (blue line). Concurrently,

RBE – In Vitro (for ²¹²Pb/²¹²Bi)

RBE for 37% survival = 8; RBE2 = 10

Ioanna Liatsou, Remco Bastiaannet, Rob Hobbs

RBE – In Vivo (for ²¹²Pb/²¹²Bi)

Ioanna Liatsou, Remco Bastiaannet, Rob Hobbs

RBE – In Vivo (for ²¹²Pb/²¹²Bi)

Ioanna Liatsou, Remco Bastiaannet, Anders Josefsson, Rob Hobbs

RBE – In Vivo (for ²¹²Pb/²¹²Bi)

Ioanna Liatsou, Remco Bastiaannet, Anders Josefsson, Rob Hobbs

RBE – In Vitro (for ²¹²Pb/²¹²Bi)

XRT

Dose is "set"

Sgouros et al. 2020

Ioanna Liatsou, Remco Bastiaannet, Rob Hobbs

Canine Osteosarcoma

(A) FDG-PET/CT image of an OS-bearing dog shows three metastatic tumors with two in the ribs and one in the fourth lumbar vertebra (arrows). (B) SPECT/CT image of the same dog as shows avid uptake of [111In]In-DTPA-hu3F8 (IVadministered 36 MBq) in all the OS lesions (arrows) 48 hours after injection. (C-E) Coronal (C), axial (D), and sagittal (E) views of SPECT/CT images of one OS lesion from the same dog as (A). (F-H) Coronal (F), axial (G), and sagittal (H) views of SPECT/CT images of the second dog show avid uptake of [111In]In-DTPA-hu3F8 (IVadministered 100 MBq) in metastatic lesions close to previous amputation site in the right thoracic limb (arrow). (I-J) Immunohistochemical staining of postmortem shoulder (I) and pulmonary (J) metastatic tissues shows the detection of [¹¹¹In]In-DTPA-hu3F8 within both shoulder and lung lesions of the dog shown in F. Bar represents 100 µm.

Yingli Fu, Jing Yu, İoanna Liatsou, Yong Du,

Yingli Fu, Jing Yu, Ioanna Liatsou, Yong Du,

Canine Osteosarcoma

SCN-Bn-DOTA -SCN-Bn-DOTA Conjugation buffer, pH 8, RT, overnight							
	Isotope to Conjugate Ratio	Labeling Buffer, pH	Duration of Labeling at 37 ºC (mins)	*iTLC Yield (%)	Purification w/ PD-10 column	Purity (%)	Specific Activity (kBq/g)
Anti-HER2/neu Ab (7.16.4)	-11	3M NaOAc, pH: 7-7.5	60	>95	NO	>>95	3.4
Anti-GD2 Ab (Hu3F8)		3M NaOAc/0.2 N HCl, pH: 6.5-7	80	60-77	YES	>95	2.8

*iTLC moving phase: EDTA (10mM) or NaOH (10mM), NaCI (150mM)

loanna Liatsou

Acknowledgments

- Remco Bastiaannet
- Mahmood Hasan
- Rob Hobbs
- Zhi Li
- Jing Yu
- Ioanna Liatsou
- Yong Du
- Eric Frey
- Yingli Fu
- Dara Kraitchman
- Jeffrey Bryan (Mizzou)
- Nai-Kong Cheung (MSKCC)

Radiology and Radiological Science > Education > ms_medical_physics

Master's in Medical Physics

The program is designed for full-time students who wish to pursue a career as a medical physicist either as a researcher, as a certified clinical profession or in industry. The program, set to commence in fall 2021, will require successful completion of a minimum of 38 credits for Master's degree and completion of a research thesis (in conjunction with one or more of the faculty). Full-time master's students will complete the program in two years.

