



# 225Ac and 213Bi for radioimmunotherapy of cancer, infections and beyond

## Ekaterina (Kate) Dadachova, Ph.D.

Professor of Pharmacy, Fedoruk Center for Nuclear Innovation Chair in Radiopharmacy
University of Saskatchewan, SK, Canada

## Ever evolving Actinium.....

Coordination Chemistry Reviews 446 (2021) 214130



Contents lists available at ScienceDirect

#### Coordination Chemistry Reviews

journal homepage: www.elsevier.com/locate/ccr



Review

## The coordination properties and ionic radius of actinium: A 120-year-old enigma



Gauthier J.-P. Deblonde \*,1, Mavrik Zavarin 2, Annie B. Kersting 3

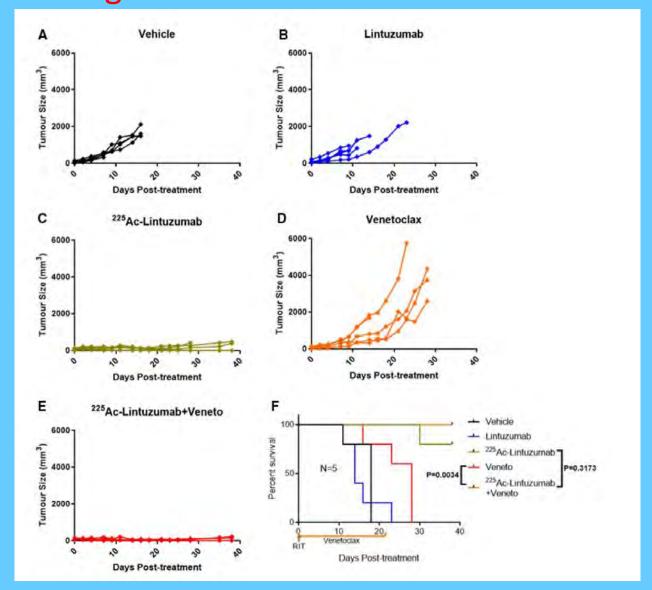
Glenn T. Seaborg Institute, Physical and Life Sciences Directorate, L-231, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States

#### ARTICLE INFO

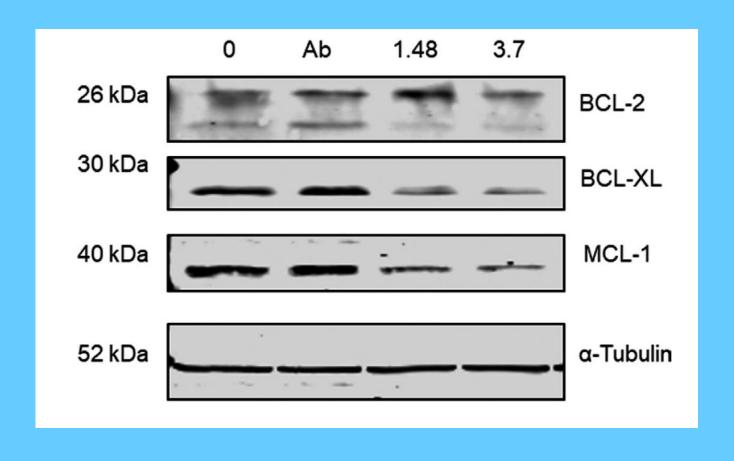
Article history: Received 8 June 2021 Accepted 11 July 2021

Keywords:
Actinium
Actinides
Lanthanides
Coordination
Ionic radius
Targeted alpha therapy

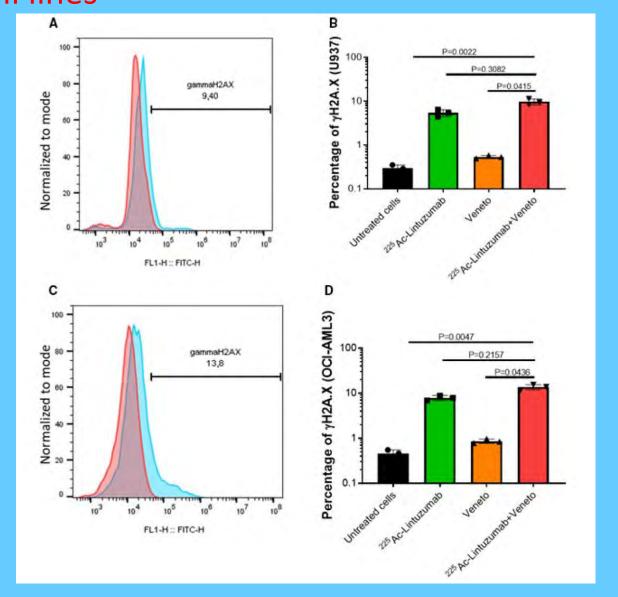
#### ABSTRACT


Actinium is an elusive element with untamed properties and represents a peculiar case in the periodic table, as its isotopes are all radioactive, the longest-lived one having only a 22-year half-life, and the availability of actinium isotopes remains very low (microgram level, at best), hindering research on its compounds. Despite being a natural element discovered more than 120 years ago, and despite an increasing interest in using one of its isotopes (225Ac) for highly efficient cancer therapies, the chemistry of actinium is still largely unknown relative to other elements. Since Ac is the first element of the actinide series, it is accepted that its ion, Ac3+, is the most voluminous trivalent cation of the periodic table. However, the structural data available on Ac3+ compounds are scarce and have mainly been collected in the 1940-1960's, when actinide chemistry was still in its infancy, and have not been put in perspective with the advances in the chemistry of other elements, making it difficult to accurately evaluate its actual size and coordination chemistry. Herein, we review progress made on the chemistry of lanthanides and actinides and reevaluate the structural data published on Ac3+ since the era of the Manhattan Project. The data are combined across different spectroscopic and characterization methods and presented in the context of periodic trends. When considering crystallographic data, solution chemistry results, and the nuclear properties of actinium isotopes, it appears that some structural parameters ascribed to the Ac<sup>3+</sup> ion may have been overestimated. This review can guide researchers interested in actinide sciences and those who are pursuing the development of actinium-based radiotherapies, from isotope production to clinical trials.

© 2021 Elsevier B.V. All rights reserved.




<sup>225</sup>Ac-labeled CD33-targeting lintuzumab and BCL-2 inhibitor venetoclax for radioimmunotherapy of acute myeloid leukemia (AML)


<sup>225</sup>Ac-Lintuzumab and venetoclax combination provides a robust antitumor response and increases survival benefit in OCI-AML3 xenografts



## <sup>225</sup>Ac-lintuzumab downregulates the anti-apoptotic MCL-1, BCL-2, and BCL-XL protein levels in OCI-AML3 cells



## <sup>225</sup>Ac-lintuzumab induces double-stranded DNA breaks in AML cell lines



Garg R. et al. Cancer Med. 2021, Clinical trial NCT03867682 is ongoing

## <sup>213</sup>Bi-labeled antibodies to 1,3-beta-glucan for radiommunotherapy of fungal infections



#### **HHS Public Access**

Author manuscript

Mycopathologia. Author manuscript; available in PMC 2015 April 15.

Published in final edited form as:

Mycopathologia. 2012 June; 173(0): 463-471. doi:10.1007/s11046-011-9476-9.

## Toward Developing a Universal Treatment for Fungal Disease Using Radioimmunotherapy Targeting Common Fungal Antigens

#### R. A. Bryan,

Albert Einstein College of Medicine, 1695A Eastchester Rd., Bronx, NY 10461, USA

#### A. J. Guimaraes.

Albert Einstein College of Medicine, 1695A Eastchester Rd., Bronx, NY 10461, USA

#### S. Hopcraft,

Albert Einstein College of Medicine, 1695A Eastchester Rd., Bronx, NY 10461, USA

#### Z. Jiang.

Albert Einstein College of Medicine, 1695A Eastchester Rd., Bronx, NY 10461, USA

#### K. Bonilla.

Albert Einstein College of Medicine, 1695A Eastchester Rd., Bronx, NY 10461, USA

#### A. Morgenstern,

Institute for Transuranium Elements, Karlsruhe, Germany

#### F. Bruchertseifer,

Institute for Transuranium Elements, Karlsruhe, Germany

#### M. Del Poeta,

Medical University of South Carolina, Charleston, SC, USA

#### A. Torosantucci,

Istituto Superiore di Sanita, Rome, Italy

#### A. Cassone.

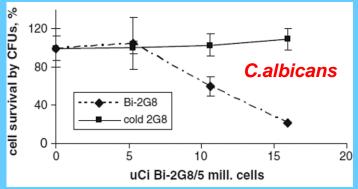
Istituto Superiore di Sanita, Rome, Italy

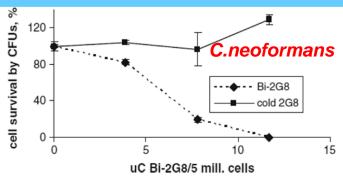
#### J. D. Nosanchuk.

Albert Einstein College of Medicine, 1695A Eastchester Rd., Bronx, NY 10461, USA

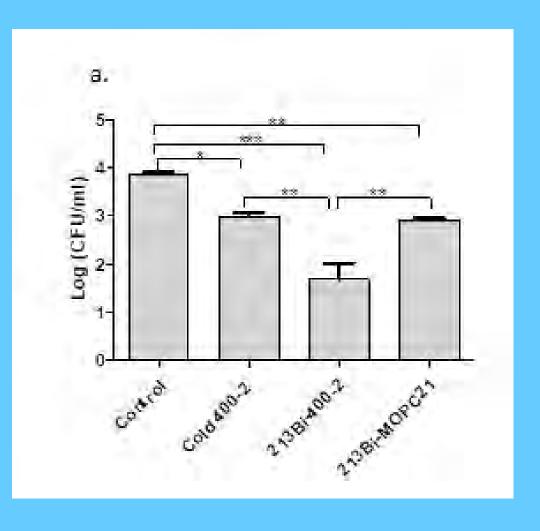
#### A. Casadevall, and

Albert Einstein College of Medicine, 1695A Eastchester Rd., Bronx, NY 10461, USA


#### E. Dadachova


Albert Einstein College of Medicine, 1695A Eastchester Rd., Bronx, NY 10461, USA

E. Dadachova: ekaterina.dadachova@einstein.yu.edu


## All human pathogenic fungi express:

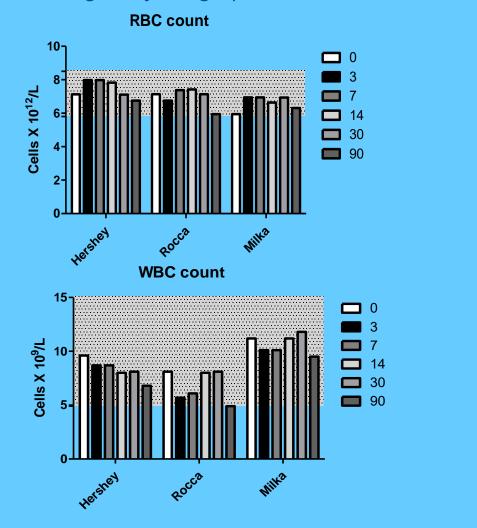
### heat shock protein 60 beta (1,3)-glucan ceramide melanin





## Treating mice infected with *Blastomyces dermatitidis* with RIT targeting beta-glucan






Helal M. et al. Front. Microbiol., 2020

### Safety study of 213Bi-400-2 antibody in healthy dogs

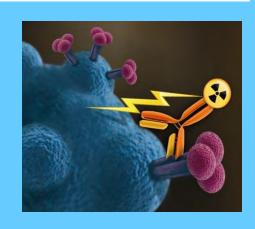


Three 1.5 year old female beagles were given intraveniously 3.5 mCi 213Bi-400-2 (0.5 mCi/kg body weight).



Helal M. et al. Molecules, 2020

<sup>213</sup>Bi- and <sup>225</sup>Ac-labeled antibodies to HIV gp41 for radiommunotherapy of HIV


PLoS One. 2012;7(3):e31866. Epub 2012 Mar 9.

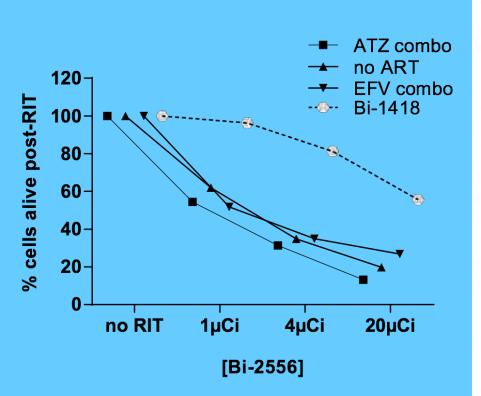
## Pre-Clinical Evaluation of a <sup>213</sup>Bi-Labeled 2556 Antibody to HIV-1 gp41 Glycoprotein in HIV-1 Mouse Models as a Reagent for HIV Eradication

Ekaterina Dadachova<sup>1\*</sup>, Scott G. Kitchen<sup>2</sup>, Gregory Bristol<sup>2</sup>, Gayle Cocita Baldwin<sup>2</sup>, Ekaterina Revskaya<sup>1</sup>, Cyril Empig<sup>3</sup>, George B. Thornton<sup>3</sup>, Miroslaw K. Gorny<sup>4</sup>, Susan Zolla-Pazner<sup>4,5</sup>, Arturo Casadevall<sup>1</sup>

### **High affinity**

Ka = 0.1 nM, 3.6×10<sup>6</sup> binding sites per infected cell




### **Targeted killing**

Demonstrated *in vitro* and *in vivo* killing of infected human cells. **RIT reduced HIV to undetectable levels.** 

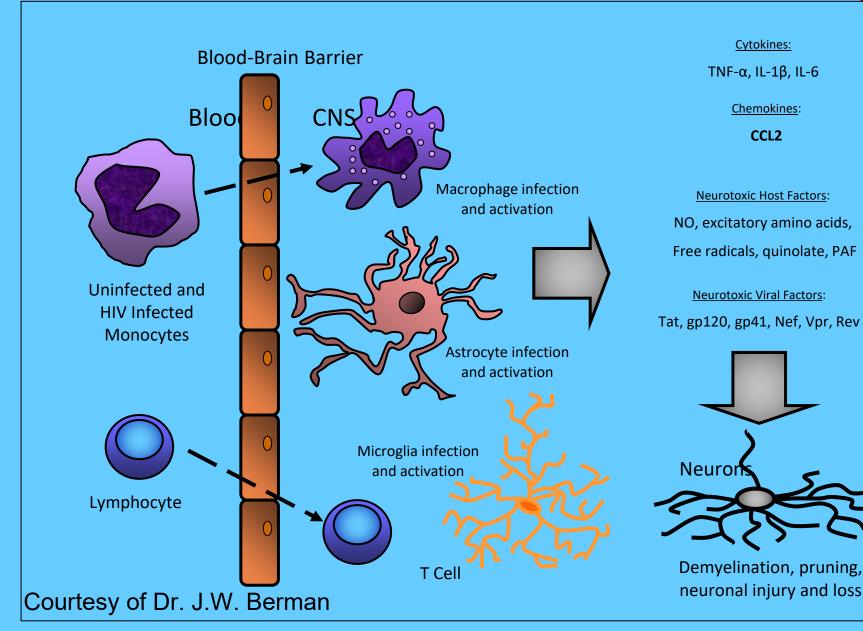
### Low toxicity

Platelet counts and gross pathology unaffected by RIT

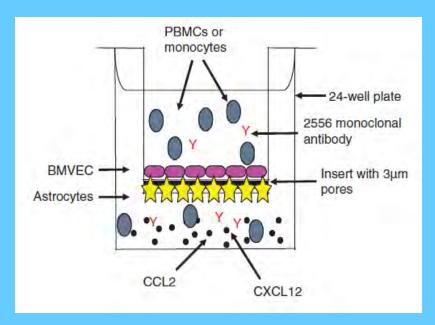

## RIT-induced killing of PBMCs derived from 15 ART-treated or ART-naive patients

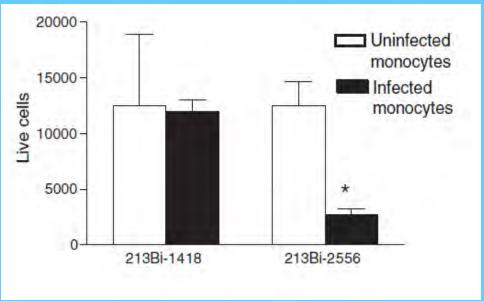


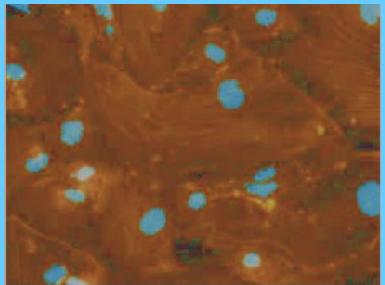
| Patient           | 0 μCi        | 4 µCi        | 20 μCi       |
|-------------------|--------------|--------------|--------------|
| ART- NAÏVE        | _ = == =     |              |              |
| Well-controlled   |              |              |              |
| DT11              | Not detected | Not detected | Not detected |
| DT15              | 31,860       | 50,770       | 35,355       |
| Poorly-controlled |              |              |              |
| DT04              | 44,702       | 18,300       | 13,883       |
| DT08              | 257,040      | 108,735      | 5,480        |
| DT09              | 113,670      | 138,075      | 4,425        |
| TFV/FTC/EFV       |              |              |              |
| Well-controlled   |              |              |              |
| DT02              | 288          | Not detected | Not detected |
| DT07              | <400*        | Not detected | Not detected |
| DT14              | Not detected | 250          | Not detected |
| Poorly-controlled |              |              |              |
| DT12              | 18,420       | <400         | Not detected |
| DT13              | 8,245        | 2,795        | 325          |
| TFV/FTC/ATZ/RTV   |              |              |              |
| Well-controlled   |              |              |              |
| DT01              | Not detected | Not detected | <400*        |
| DT05              | 310          | Not detected | Not detected |
| DT06              | Not detected | Not detected | Not detected |
| Poorly-controlled |              |              |              |
| DT03              | <400*        | <400*        | <400*        |
| DT10              | 49,775       | 14,890       | Not detected |


## **Another Kind of AIDS Crisis**

A striking number of HIV patients are living longer but getting older faster—showing early signs of dementia and bone weakness usually seen in the elderly.

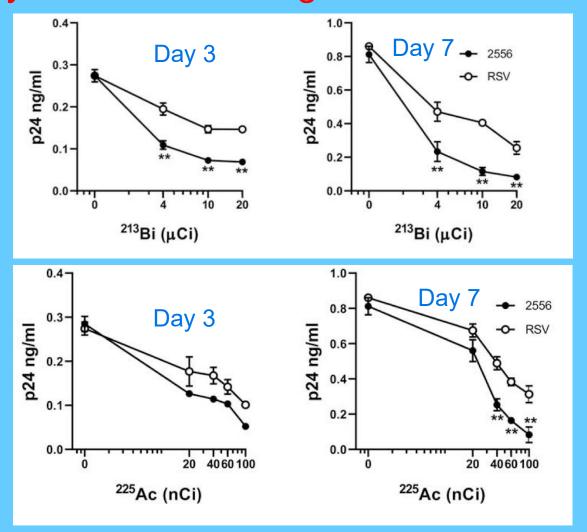




Left: Cesar Figueroa. Age: 50 / HIV: 20 years / Has suffered from: dementia, neuropathy, depression Right: Mike Weyand. Age: 58 / HIV: 20 years / Has suffered from: osteoporosis, lipodystrophy, memory loss. (Photo: Marco Grob)


### Mechanisms of CNS HIV Infection and Damage



## RIT induced killing of HIV-infected cells in human BBB model








McFarren A. et al. AIDS 2016

## <sup>213</sup>Bi- and <sup>225</sup>Ac-labeled 2556 anti-gp41 antibodies are equally effective in killing HIV infected monocytes



Garg R. et al. Nucl. Med. Biol. 2020

## Next steps should be combination treatments in humanized mice and non human primates

Combination of ART, RIT and possibly, reactivation drugs in a state of the art humanized mouse model as a prelude to non-human primates studies.

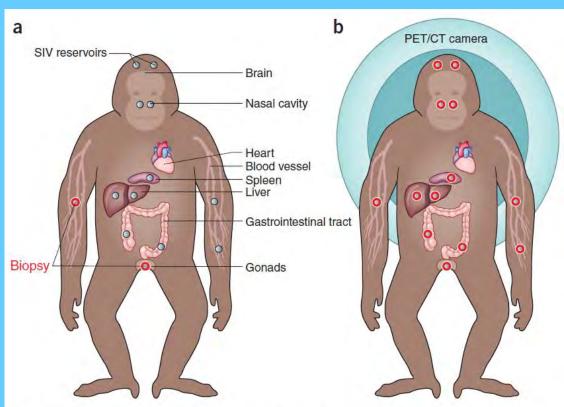



Figure 1 | Evaluating SIV reservoirs in monkeys. (a) Few SIV reservoirs (gray dots) can be easily reached and evaluated by biopsy (red circles). (b) SIV reservoirs can be comprehensively visualized and evaluated by immunoPET. CT, computed tomography.

### Next Frontier...

<sup>225</sup>Ac and <sup>213</sup>Bi – labeled antibodies may be suitable for selective killing of cytotoxic T and B cells in autoimmune disorders such as diabetes, lupus and multiple sclerosis.

### Conclusions

- Unique properties of <sup>225</sup>Ac and <sup>213</sup>Bi make them very attractive for treatment of cancer and infectious diseases.
- These radionuclides may also find applications for treatment of autoimmune disorders.
- Collaborations between researchers, physicians and industry partners are needed to bring those novel therapies to patients.



## Thank you!

**Dadachova's Lab** 

**Albert Einstein College of Medicine** 

Mackenzie Malo

Joshua Nosanchuk

Kevin Allen

Dina Tsukrov

Kerry Lavender

Liz Snead

U of S

Rubin Jiao

Alicia McFarren

Connor Frank

Ruth Bryan

Wojciech Dawicki

Joan Berman

Ravendra Garg

**Arturo Casadevall** 

Muath Helal Kienna Mills

**Actinium Pharmaceuticals** 

**Northwestern University** 

DOE

Dale Ludwig

Elena Martinelli

Saed Mirzadeh

Eileen Geoghegan

Rose Boll

**Institute for Transuranium Elements, Germany** 

Alfred Morgenstern

Frank Bruchertseifer

NYU

Mirek Gorny

Susan Zolla-Pazner

**Funding** 

SHRF, Canada

Fedoruk Center for Nuclear Innovation, Canada

National Institutes of Health, USA

Bill and Melinda Gates Foundation, USA

Actinium Pharmaceuticals, USA