

Ac-225 DOE Isotope Program User Group Meeting

Eva Birnbaum, Los Alamos National Laboratory

Dan Stracener, Oak Ridge National Laboratory, Project Manager, U.S. DOE Tri-Lab

- A brief perspective on supply/demand for ²²⁵Ac
- High-energy accelerator production of ²²⁵Ac (with ²²⁷Ac co-product)
- Status of Drug Master File development, FDA interactions and licensing issues
- Improvements and alternate production routes being pursued
- Roundtable presentations on experiences with accelerator-produced ²²⁵Ac

ORNL ²²⁵Ac Finished Product

Moderated Q&A session

Cancer Type	Radioconjugate	Patients
Leukemia	²¹³ Bi-anti-CD33-mAb	49
	²²⁵ Ac-anti-CD33-mAb	76
Lymphoma	²¹³ Bi-anti-CD20-mAb	12
Melanoma	²¹³ Bi-anti-MCSP-mAb	54
Bladder cancer	²¹³ Bi-anti-EGFR-mAb	12
Glioma	²¹³ Bi-Substance P	68
	²²⁵ Ac-Substance P	20
Neuroendocrine tumors	²¹³ Bi-DOTATOC	25
	²²⁵ Ac-DOTATOC	39
Prostate cancer	²²⁵ Ac-PSMA617	>400

²²⁵Ac-DOTA-PSMA617 has demonstrated the power of Targeted Alpha Therapy (TAT) and is paving the way for a variety of other applications in oncology as well as infectious disease.

A. Morgenstern, C. Apostolidis, F. Bruchertseifer. Seminars in Nucl Med. **2020** 50(2): 119–123

²²⁵Ac Supply & Demand

Current worldwide supply of ²²⁵Ac from ²²⁹Th/²²⁵Ac generators is estimated at 1200-1700 mCi/yr*

Patient doses, as informed by clinical trials, are estimated at:

 $^{225}Ac:$ 2-5 μCi per patient kg

(160-640 µCi/patient)

²¹³Bi: 1 mCi per patient kg
(Optimum generator loading estimated at 100-150 mCi ²²⁵Ac)

Projection of ²²⁵Ac demand assuming multiple, approved ²²⁵Ac and ²¹³Bi drugs and robust clinical R&D programs could be in the hundreds of Ci/year**

*International Atomic Energy Agency. Technical Meeting Report "Alpha Emitting Radionuclides and Radiopharmaceuticals for Therapy" IAEA Headquarters Vienna, Austria, June **2013**

And

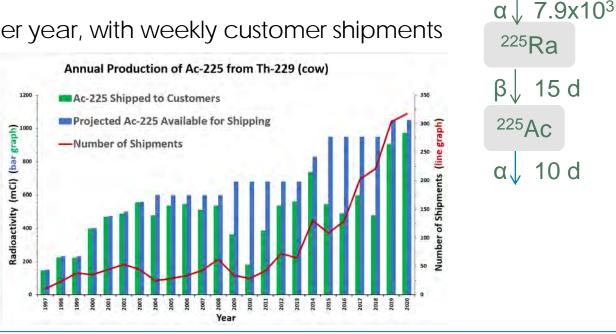
International Atomic Energy Agency. Technical Meeting Report "Supply of Actinium-225" IAEA Headquarters Vienna, Austria, October **2018**

**US DOE Offices of Nuclear Energy and Nuclear Physics "2008 Workshop on The Nation's Needs for Isotopes: Present and Future" Rockville, MD August 2008

Brookhaven

lational Laboratory

Actinium-225 Production at ORNL


- ORNL has been the main supplier of ²²⁵Ac (via decay of existing ²²⁹Th stock) since 1997 ٠
- >10 Ci of ²²⁵Ac shipped in >2000 packages
- Approximately 1 Ci of ²²⁵Ac is harvested annually from 130 mCi ²²⁹Th stock at ORNL •
- Thirteen 4-week campaigns are performed per year, with weekly customer shipments ۲

💫 Los Alamos

Rationale for pursuing additional routes for production of ²²⁵Ac

• The present supply is insufficient to meet the growing research and medical applications demands for ²²⁵Ac

National Laboratory

Isotope Program

U.S. Department of Energy

233

229**Th**

 $\alpha \downarrow$

1.6x10⁵

Accelerator Production via ²³²Th(p,x)²²⁵Ac:

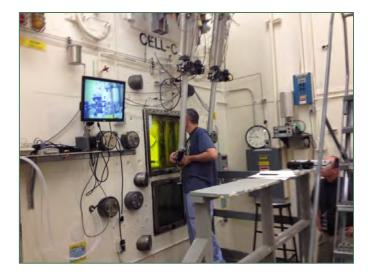
Facility	Anticipated Single Target Ac-225 Yields (10 day irradiation)
LANL (100 MeV, 250- 450 μΑ)	1.3-2.3* Ci
BNL (200 MeV, 165 μΑ)	2.2 Ci

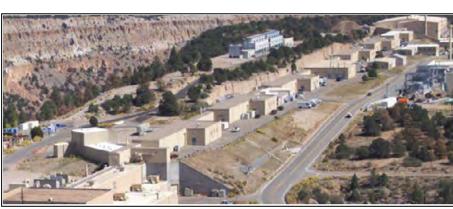
* Theoretical maximum value assumed for production with 450 µA on target resulting from recent facility investments.

Facility investments at IPF and BLIP have increased our projected production capacity

U.S. Department of Energy

J.W. Weidner et al. Appl. Radiat. Isot. 70 (2012) 2602 J.W. Engle et. al. Phys. Rev. C. 88 (2013) 014604 J.W. Engle et. al. Radiochim. Acta 102 (2014) 569 J.R. Griswold et. al. Appl. Radiat. lsot. 118 (2016) 366




NATIONAL ISOTOPE

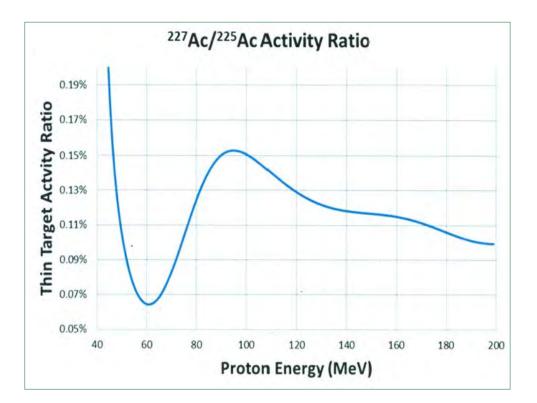
Basis of the Tri-Lab Effort:

Leveraging Unique Isotope Program Facilities, Capabilities, and Expertise to Address ²²⁵Ac Supply

ORNL - Approximately 25 years of experience in the isolation of ²²⁵Ac from fissile ²³³U via ²²⁹Th

LANL Isotope Production Facility (IPF) at LANSCE; 100 MeV incident energy up to 275 μ A for routine production

BNL Linac at the Brookhaven Linac Isotope Producer (BLIP) 165 μA intensity to targets at incident energies ranging from 66-202 MeV



Production of ²²⁵Ac via high-energy accelerator results in the co-production of ²²⁷Ac ($t_{1/2}$ = 21.8 y)

Ratio improves at higher proton energy, but degrades with longer irradiation time – <u>we</u> <u>understand this ratio at an exquisite level of detail</u>

²²⁷Ac co-product creates a unique set of challenges – perceptions and facility licensing (NRC), patient waste disposition

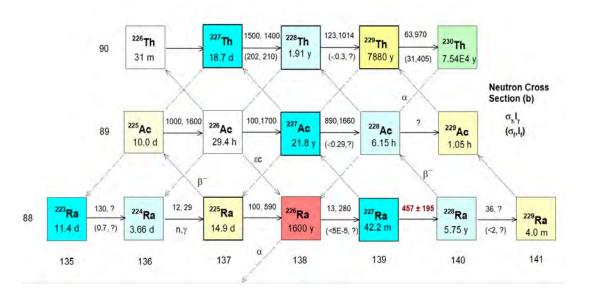
These challenges are not unique and have been addressed for other isotope products

Instantaneous activity ratio of ²²⁷Ac to ²²⁵Ac for a thin Th target as a function of proton beam energy. Note that beam energy range captures current capabilities at BNL's BLIP and LANL's IPF facilities.

General Accelerator-Produced ²²⁵Ac Product Conclusions

- Accelerator-produced ²²⁵Ac performs similar to ²²⁹Th-derived ²²⁵Ac
 - direct labeling efficiencies are comparable
 - ²¹³Bi generator performance is the same
 - the impact of ²²⁷Ac content on dosimetry has been demonstrated to be small*
- Challenges remain with respect to the logistical considerations associated with the ²²⁷Ac co-product
 - facility licensing (decommissioning funding plans)
 - discussions ongoing with the NRC to potentially obtain an exemption as previously done for ⁶⁸Ge
 - patient waste (likely not an issue for an approved drug)
- * Sgouros et al, J. Med Imaging & Rad. Sciences, **2019**, 50(4) <u>https://doi.org/10.1016/j.jmir.2019.11.120</u> Jiang et al., Curr. Radiopharmaceuticals, **2018**, 11(3) <u>https://doi.org/10.2174/1874471011666180423120707</u>

- A Type II Drug Master File (DMF) was submitted in December 2019 for accelerator produced Ac-225
- A Type II DMF was submitted in December 2020 for the ²²⁹Th-derived ²²⁵Ac product
- Interaction with the Food and Drug Administration is ongoing in reference to both products
- We are committed to making these products available to our customers/the medical community and are happy to address any further questions

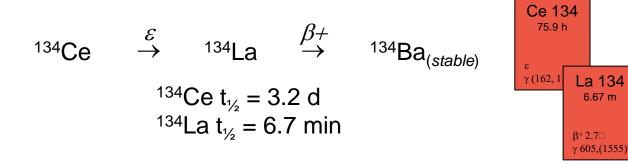

Continuing Efforts to Increase Availability of ²²⁵Ac

- Increasing frequency and size of accelerator ²²⁵Ac batches
- Addressing technical and logistical challenges while ensuring product is consistent and reliable
- Additional facility investments in progress to enable more frequent and larger batch sizes
- Building in processing capability redundancy to enhance reliability

Alternative Routes of Production Under Investigation

- ANL electron linac production route
 - -²²⁶Ra(γ,n)²²⁵Ra→²²⁵Ac
- BNL low energy cyclotron route - ²²⁶Ra(p,2n)²²⁵Ac
- ORNL neutron production route $-^{226}Ra(3n,\gamma)^{229}Ra \rightarrow^{229}Ac \rightarrow^{229}Th$

S. Hogle et al., Reactor Production of Thorium-229, Appl. Radiat. Isot. 114, 19 (2016)



Complementary Imaging Isotope Under Development

- ¹³⁴Ce is a potential f-element PET imager that is chemically similar to Ac and Th.
- The ¹³⁴Ce/¹³⁴La can be used to image ²²⁵Ac when reduced (¹³⁴Ce^{III}) and ²²⁷Th when oxidized (¹³⁴Ce^{IV}).

Evaluation batches in progress!

T.A. Bailey et al., Nature Chemistry, (2021) 13, 284–289

- The Tri-Lab effort is routinely producing ²²⁵Ac and <u>product is available</u> for end users and shipments to multiple users have been completed
- We have distributed over 440 mCi of accelerator produced ²²⁵Ac to evaluators
- We are working with companies and research hospitals in preparation to support Phase I trials – we have observed increased adoption of the accelerator product
- ²²⁷Ac content is clinically insignificant from a dosimetry/toxicity perspective but challenges with perception and regulatory compliance remain; we have a well-defined forward path to address these challenges with DOE
- Continuing to scale up availability of this important isotope

For more information: https://isotopes.gov/

- 1:10 1:25 PM Rebecca Abergel (University of California, Berkeley)
- 1:25 1:40 PM Ekaterina Dadachova (University of Saskatchewan)
- 1:40 1: 55 PM Jim O'Leary and Thomas Armor (Fusion Pharma)
- 1:55 2: 10 PM Neil Bander (Weill Cornell)
- 2:10 2: 25 PM George Sgouros (Johns Hopkins University)
- 2:25 3: 00 PM Q&A & Discussion

