Preclinical evaluation of 212Pb-based radiopharmaceutical therapy of prostate cancer

Sangeeta Ray (Banerjee), Ph. D.

Division of Nuclear Medicine and Molecular Imaging
The Russell H. Morgan Department of Radiology and Radiological Science
Johns Hopkins University, Baltimore, USA
Prostate-Specific Membrane Antigen (PSMA)

- Type II transmembrane protein
- Associated with aggressive prostate cancer (85-95% late stage patients)
- Present in solid tumor neovasculatures
- Marker of androgen signaling

High-affinity radiometal-based agents

Banerjee et al.
PSMA-based radiotherapeutics: Radiometals

- To reduce toxicity in normal tissues
- Selection of radiometal to match the disease stage
- Risk/benefit of β- vs. α-particle radiometals
- 40–60% patient respond to 177Lu-PSMA-617
The decay chain of ^{212}Pb

- In vivo α-particle nanogenerator of ^{212}Bi
- Potential imaging (γ-ray) capabilities
- Half-life 10.6 hours
$^{86}\text{Y}/^{68}\text{Ga}$-labeled PET radiotracers

Advanced Accelerator Applications (AAA-Novartis)

$^{86}\text{Y}/^{177}\text{Lu}/^{68}\text{Ga-SRVI71}$

Courtesy: Dr. Richard Baum

$^{68}\text{Ga-SRVI71}$
Structure-activity relationship study: \(^{177}\text{Lu}\)-labeled compounds

Banerjee et al.
Preclinical evaluation by 203Pb-labeled analogs

<table>
<thead>
<tr>
<th>Compound</th>
<th>K_i (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>0.2-0.5</td>
</tr>
<tr>
<td>L2</td>
<td>8.5-10.3</td>
</tr>
<tr>
<td>L3</td>
<td>5.8-9.5</td>
</tr>
<tr>
<td>L4</td>
<td>6.3-7.8</td>
</tr>
<tr>
<td>L5</td>
<td>0.2-0.4</td>
</tr>
<tr>
<td>Pb-L2</td>
<td>10.1-15.3</td>
</tr>
<tr>
<td>Pb-L3</td>
<td>11.1-17.1</td>
</tr>
<tr>
<td>Pb-L5</td>
<td>0.5-0.9</td>
</tr>
<tr>
<td>DCIBzL</td>
<td>0.01-0.06</td>
</tr>
</tbody>
</table>

Fast renal clearance for 203Pb-L2, 203Pb-L3, 203Pb-L4 with TCMC chelating agent

(Banerjee et al. J Nucl Med 2020)
Time-dependent tissue uptake (^{203}Pb-labeled analogs)

[Graphs and images showing time-dependent tissue uptake in blood, kidney, and PSMA+ tumor for 1, 2, 4, and 24 hours.]
Radiopharmaceutical therapy: 212Pb-L2

High treatment efficacy in PSMA+ flank tumor model and PSMA+ micrometastatic model (100 uCi, single administration)

Tumor model: PSMA+/PSMA- PC3 flank

Study design

- Cell Injection
- Activity

Days post-treatment

Percent survival ($V_t/V_0 < 10$)

0 10 20 30 40 50 60 70 80 90

0

20

40

60

80

100

PIP Control (13 d)
PIP (1.5 MBq) (25 d)
PIP (3.7 MBq) (39 d)
flu Control (14.5 d)
flu (1.5 MBq) (7.5 d)
flu (3.7 MBq) (16 d)

control
177Lu-PSMA-617 (37 MBq)
212Pb-L2 (3.7 MBq)
Long-term radiotoxicity data

Dose-limiting organ: kidney
Maximum tolerated activity: ~ 40 μCi (1.5 MBq)
No hematologic toxicity
Study design

Treatment group (kBq)
- 0 (n=8), 9.3 (n=5), 18.5 (n=5), 37 (n=8), 74 (n=8)
- 9.3 x 2 (n=5), 18.5 x 2 (n=8)

Activity injection
- 0 (V_t/V_o ≤ 10)
- 7 (V_t/V_o ≤ 10)
- 56

Acute toxicity study
- 0, 37, 74
- 18.5 x 2 (n=3)

Treatment group (kBq) for acute toxicity (n=3)
- 0 kBq (PSMA+)
- 0 kBq (PSMA-)
- 18.5 kBq x 2 (PSMA-)
- 9.3 kBq (PSMA+)
- 9.3 kBq x 2 (PSMA+)
- 18.5 kBq (PSMA+)
- 18.5 kBq x 2 (PSMA+)
- 37 kBq (PSMA+)
- 37 kBq x 2 (PSMA+)

Probability of V_t/V_o
- DAYS AFTER START OF TREATMENT (d)

Relative tumor volume (V_t/V_o)

PSMA+ (0 kBq)
- Safe and effective activity
- 18.5 kBq x 2 (7 days apart)
225Ac-L1 vs. 177Lu-L1

- **Percent survival**
 - Days after start of treatment [d]
 - Control (0 kBq)
 - 177Lu-L1 (37 MBq)
 - 225Ac-L1 (37 kBq)
 - 225Ac-L1 (74 kBq)

<table>
<thead>
<tr>
<th>Treatment group</th>
<th>Median survival (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 kBq</td>
<td>47</td>
</tr>
<tr>
<td>37 MBq</td>
<td>48</td>
</tr>
<tr>
<td>37 kBq</td>
<td>56</td>
</tr>
<tr>
<td>74 kBq</td>
<td>79</td>
</tr>
</tbody>
</table>

Tumor model:
PSMA+ micrometastatic

Higher efficacy of 225Ac-L1 compared to 177Lu-L1

Alpha-camera imaging

- 225Ac-L1: Fast renal cortical clearance
Summary

Significant therapeutic efficacy in PSMA+ PC3 PIP flank tumor model

Efficacy of α-particle emitting agents (212Pb/225Ac) in micrometastatic model

Optimized radiotheranostic agent, 68Ga/177Lu-PSMA-R2 (NCT03490838)

Towards translation of 212Pb as a clinical therapeutic; getting the lead in! (Brechbiel et al. 2011, Dalton Trans)

Development and dosimetry of 203Pb/212Pb-labelled PSMA ligands: bringing “the lead” into PSMA-targeted alpha therapy? (Santos et al. 2019, Eur J Nucl Med Mol Imaging)
Acknowledgement

Our Team

Ala Lisok, Dr. Vivek Kumar, Dr. Srikath Boinapally, Dr. IL Minn, Mary Brummet, Dr. Ronnie C. Mease, Dr. Martin G. Pomper

Collaborators: Dr. Anders Josefsson, Dr. Cory Brayton, Dr. George Sgouros, Dr. Robert F. Hobbs (JHU)

Collaborators: Dr. Kwamena Baidoo, Dr. Martin Brechbiel (NIH NCI) for Pb-203 and Pb-212

DOE Isotope Program

Financial Support

Emerson Collective, Walter and Mary Ciceric Research Fund, Patrick Walsh Foundation (Ray) R01CA134675, P41EB024495, Commonwealth Foundation (Pomper)