Preclinical evaluation of ²¹²Pb-based radiopharmaceutical therapy of prostate cancer

Sangeeta Ray (Banerjee), Ph. D.

Division of Nuclear Medicine and Molecular Imaging The Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University, Baltimore, USA

Prostate-Specific Membrane Antigen (PSMA)

- Type II transmembrane protein
- Associated with aggressive prostate cancer (85-95% late stage patients)
- Present in solid tumor neovasculatures
- Marker of androgen signaling

High-affinity radiometal-based agents

Banerjee *et al.*

J Med Chem 2008, J Med Chem 2010, Angew Chem Int Ed 2011, Oncotarget 2011, J Med Chem 2013, J Med Chem 2014, J Nucl Med 2015, Angew Chem Int Ed. 2015, Bioconjug Chem 2016, Biomacromolecules 2017, Chemistry 2018, Eur J Nucl Med Mol Imaging 2019, J Nucl Med 2020

KINS

PSMA-based radiotherapeutics: Radiometals

To reduce toxicity in normal tissues

Selection of radiometal to match the disease stage

 \Box Risk/benefit of β - vs. α -particle radiometals

40–60% patient respond to ¹⁷⁷Lu-PSMA-617

The decay chain of ²¹²Pb

- In vivo α-particle nanogenerator of ²¹²Bi
- Potential imaging (γ-ray) capabilities
- Half-life 10.6 hours

⁸⁶Y/⁶⁸Ga-labeled PET radiotracers

J Nucl Med 2015;56:628-34; Angew Chem Int Ed. 2015;54:10778-82

Advanced Accelerator Applications (AAA-Novartis)

Structure-activity relationship study: ¹⁷⁷Lu-labeled compounds

Preclinical evaluation by ²⁰³Pb-labeled analogs

Time-dependent tissue uptake (203Pb-labeled analogs)

Radiopharmaceutical therapy: ²¹²Pb-L2

Long-term radiotoxicity data

Dose-limiting organ: kidney Maximum tolerated activity: ~ 40 µCi (1.5 MBq) No hematologic toxicity

²²⁵Ac-L1 treatment efficacy (flank tumor model)

²²⁵Ac-L1 vs.¹⁷⁷Lu-L1

Alpha-camera imaging

²²⁵Ac-L1: Fast renal cortical clearance

Summary

Significant therapeutic efficacy in PSMA+ PC3 PIP flank tumor model

Efficacy of α -particle emitting agents (²¹²Pb/²²⁵Ac) in micrometastatic model

Optimized radiotheranostic agent, ⁶⁸Ga-/¹⁷⁷Lu-PSMA-R2 (NCT03490838)

Towards translation of ²¹²Pb as a clinical therapeutic; getting the lead in! (Brechbiel et al. 2011, Dalton Trans)

Development and dosimetry of ²⁰³Pb^{/212}Pb-labelled PSMA ligands: bringing "the lead" into PSMA-targeted alpha therapy? (Santos et al. 2019, Eur J Nucl Med Mol Imaging)

Acknowledgement

Our Team

Ala Lisok, Dr. Vivek Kumar, Dr. Srikath Boinapally, Dr. IL Minn, Mary Brummet, Dr. Ronnie C. Mease, Dr. Martin G. Pomper Collaborators: Dr. Anders Josefsson, Dr. Cory Brayton, Dr. George Sgouros, Dr. Robert F. Hobbs (JHU) Collaborators: Dr. Kwamena Baidoo, Dr. Martin Brechbiel (NIH NCI) for Pb-203 and Pb-212 DOE Isotope Program

Financial Support Emerson Collective, Walter and Mary Ciceric Research Fund, Patrick Walsh Foundation (Ray) R01CA134675, P41EB024495, Commonwealth Foundation (Pomper)