Radiolabeling Comparison of Accelerator Versus Generator Produced ²²⁵Ac

Vanessa A. Sanders, Cathy S. Cutler

Actinium Session

June 28th, 2020

BROOKHAVEN SCIENCE ASSOCIATES

Tri-Lab Effort

Leveraging Unique Isotope Program Facilities, Capabilities, and Expertise to Address ²²⁵Ac Supply

ORNL - Approximately 25 years of experience in the isolation of ²²⁵Ac from fissile ²³³U via ²²⁹Th

LANL Isotope Production Facility (IPF) at LANSCE;100 MeV incident energy up to 275 µA for routine production BNL Linac at the Brookhaven Linac Isotope Producer (BLIP) 165 μA intensity to targets at incident energies ranging from 66-202 MeV

Routine Accelerator Production of ²²⁵Ac

- Stage 2: Routine production of 50-100 mCi ²²⁵Ac
 - Continued optimization/evaluation of targets
 - Continued optimization of processing for direct ²²⁵Ac and ²²⁵Ac/²¹³Bi generator
 - Implementation of chemistry
 - Targetry scale up
- Stage 3: Routine production of 100-1000 mCi ²²⁵Ac

Accelerator Production of ²²⁵Ac

Motivation/Protocol

- To evaluate generator produced ²²⁵Ac radiolabeling yields and compare them to accelerator produced ²²⁵Ac radiolabeling yields
- Evaluate impact of presence of Ac-227
- Determine if differences are observed with time
- Used literature methods of clinical studies

- 50 µCi per reaction
- 100 °C for 30 minutes
- Timepoints
 - 0, 1, 3, 6, 10, 14, 17, 21 days post delivery.
- ITLC
 - Solvent 50/50 NH₄OAc/Methanol¹
- Varied conc. of ligand
 - 25 µmol to 5 picomol

Results- Excess Ligand Conc.

- 1:60000 M:L
- Generator batch
 received 08/06/2019
- Accelerator batch
 received 09/24/2019

Results- Moderate Ligand Conc.

- 1:50 M:L
- Generator batch
 received 11/26/2019
- Accelerator batch
 received 11/18/2019

Results- Low Ligand Conc.

- 1:1 M:L
- Generator batch
 received 11/26/2019
- Accelerator batch
 received 11/18/2019

Results

Results

Accelerator 50:1 Accelerator 1:1 100 100 90 90 80 80 70 70 60 60 November 50 50 40 40 June 30 30 20 20 10 10 Ι 0 0 Day 0 Day 1 Day 3 Day 7 Day 9 Day 0 Day 1 Day 3 Day 7 Day 9

Conclusions and Future Work

- Consistent radiolabeling yields across both production routes
 - At high ligand concentrations
- There is an observed reduction in labeling yield as the ligand concentration is varied
- Accelerator material shows higher labeling yields in early time points
 - 50:1 and 1:1
 - Possible contaminants?
- Evaluation between different batches of product
 - Current results show a trend of lower labeling yields with more recent batch
- Optimization of ITLC protocol
- Determination of Ac-227 content

Acknowledgements

- Dr. Cathy Cutler
- Medical Isotope Research
 and Production Group (MIRP)
- Karen Sikes
- Kevin John
- Ariel Brown

DOE Isotope Program www.isotopes.gov

Questions ???

