Ac-225 User Group: Production Effort to Provide Accelerator-Produced ^{225}Ac for Radiotherapy

Cathy S. Cutler, Brookhaven National Laboratory

Kevin John, Los Alamos National Laboratory, Project Manager, U.S. DOE Tri-Lab
Agenda

• A brief perspective on supply/demand and alternate production methods for ^{225}Ac

• High-energy accelerator production of ^{225}Ac (with ^{227}Ac co-product)

• Additional routes of production being pursued

• Status of Drug Master File development, FDA interactions and licensing issues
Actinium-225 Production at ORNL

- ORNL has been the main supplier of 225Ac (via decay of existing 229Th stock) since 1997
- 10 Ci of 225Ac has been shipped in 1500 packages
- 6-12 campaigns are performed per year, and campaign 156 is currently underway

Rationale for R&D related to production of 225Ac

- The present supply of 225Ac derived from 229Th is insufficient for current medical and research demands of ~6 Ci/year.
Current worldwide supply of 225Ac from 229Th/225Ac generators is estimated at 1200-1700 mCi/yr*

Patient doses, as informed by clinical trials, are estimated at:

- 225Ac: 2-5 µCi per patient kg
 (160-640 µCi/patient)

- 213Bi: 1 mCi per patient kg
 (Optimum generator loading estimated at 100-150 mCi 225Ac)

Projection of 225Ac demand assuming multiple, approved 225Ac and 213Bi drugs and robust clinical R&D programs could be in the hundreds of Ci/year**

Addressing the Supply Chain: Various $^{225}\text{Ac}/^{229}\text{Th}$ Production Routes

<table>
<thead>
<tr>
<th>Facility</th>
<th>Nuclear Reaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactor (thermal neutrons)</td>
<td>$^{226}\text{Ra}(3n,g)^{229}\text{Ra} \rightarrow ^{229}\text{Ac} \rightarrow ^{229}\text{Th}$ (plus ^{228}Ra target)</td>
</tr>
<tr>
<td>Accelerator (electrons)</td>
<td>$^{226}\text{Ra}(\text{g,n})^{225}\text{Ra} \rightarrow ^{225}\text{Ac}$</td>
</tr>
<tr>
<td>Accelerator (low energy particles)</td>
<td>$^{226}\text{Ra}(\text{p,2n})^{225}\text{Ac}$</td>
</tr>
<tr>
<td></td>
<td>$^{226}\text{Ra}(\alpha,\text{n})^{229}\text{Th}$</td>
</tr>
<tr>
<td></td>
<td>$^{226}\text{Ra}(\text{p,pn})^{225}\text{Ra}$</td>
</tr>
<tr>
<td></td>
<td>$^{232}\text{Th}(\text{p,x})^{229}\text{Th}$</td>
</tr>
<tr>
<td>Accelerator (high energy particles)</td>
<td>$^{232}\text{Th}(\text{p,x})^{225}\text{Ac}$</td>
</tr>
<tr>
<td></td>
<td>$^{232}\text{Th}(\text{p,x})^{225}\text{Ra} \rightarrow ^{225}\text{Ac}$</td>
</tr>
<tr>
<td>Accelerator (high energy neutrons)</td>
<td>$^{226}\text{Ra}(\text{n,2n})^{225}\text{Ra}$</td>
</tr>
<tr>
<td>Hot Cell Facility (^{233}U processing)</td>
<td>^{229}Th decay to ^{225}Ac</td>
</tr>
</tbody>
</table>
Accelerator Production via $^{232}\text{Th}(p,x)^{225}\text{Ac}$:

Initial R&D Promised Significant Impact

<table>
<thead>
<tr>
<th>Facility</th>
<th>Anticipated Single Target Ac-225 Yields (10 day irradiation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LANL (100 MeV, 250-450 µA)</td>
<td>1.3-2.3* Ci</td>
</tr>
<tr>
<td>BNL (200 MeV, 165 µA)</td>
<td>2.2 Ci</td>
</tr>
</tbody>
</table>

*Theoretical maximum value assumed for production with 450 µA on target resulting from recent facility investments.

Facility investments at IPF and BLIP have increased our projected production capacity

Fig. 1. Experimental and theoretical cumulative cross sections for the formation of ^{225}Ac by the proton bombardment of thorium.
Basis of the Tri-Lab Effort:

Leveraging Unique Isotope Program Facilities, Capabilities, and Expertise to Address 225Ac Supply

ORNL - Approximately 25 years of experience in the isolation of 225Ac from fissile 233U via 229Th

LANL Isotope Production Facility (IPF) at LANSCE; 100 MeV incident energy up to 275 mA for routine production

BNL Linac at the Brookhaven Linac Isotope Producer (BLIP) 165 μA intensity to targets at incident energies ranging from 66-202 MeV
Production of ^{225}Ac via high-energy accelerator results in the co-production of ^{227}Ac ($t_{1/2} = 21.8$ y)

Ratio improves at higher proton energy, but degrades with longer irradiation time – we understand this ratio at an exquisite level of detail.

^{227}Ac co-product creates a unique set of challenges – perceptions and facility licensing (NRC), patient waste disposition.

These challenges are not unique and have been addressed for other isotope products.

Instantaneous activity ratio of ^{227}Ac to ^{225}Ac for a thin Th target as a function of proton beam energy. Note that beam energy range captures current capabilities at BNL’s BLIP and LANL’s IPF facilities.
General Accelerator-Produced 225Ac Product Conclusions

- **Accelerator-produced 225Ac performs similar to 229Th-derived 225Ac**
 - direct labeling efficiencies are comparable
 - 213Bi generator performance is the same
 - the impact of 227Ac content on dosimetry has been demonstrated to be small

- **Challenges remain with respect to the logistical considerations associated with the 227Ac co-product**
 - facility licensing (decommissioning funding plans)
 - discussions ongoing with the NRC to potentially obtain an exemption as previously done for 68Ge
 - patient waste (likely not an issue for an approved drug)
Alternative Routes of Production Under Investigation

- ANL electron linac production route
 \(^{226}\text{Ra}(\gamma,n)^{225}\text{Ra} \rightarrow ^{225}\text{Ac} \)
- BNL low energy cyclotron route
 \(^{226}\text{Ra}(p,2n)^{225}\text{Ac} \)
- ORNL neutron production route
 \(^{226}\text{Ra}(3n,\gamma)^{229}\text{Ra} \rightarrow ^{229}\text{Ac} \rightarrow ^{229}\text{Th} \)
DMF/FDA Updates

• Drug Master File was submitted in December 2019 for the accelerator Ac-225

• DMF filings are anticipated for:
 – CY2020 (229Th-derived 225Ac product)

• Interaction with the Food and Drug Administration is ongoing in reference to both products

• We are committed to making these products available to our customers/the medical community and are happy to address any further questions
Summary

• The Tri-Lab effort is routinely producing ^{225}Ac and product is available for end users and shipments to multiple users have been completed

• We have distributed over 325 mCi of accelerator produced ^{225}Ac to evaluators

• We are working with companies and research hospitals in preparation to support Phase I trials - DMF will be submitted late this calendar year

• ^{227}Ac content is clinically insignificant from a dosimetry/toxicity perspective – but challenges with perception and regulatory compliance remain; we have a well-defined forward path to address these challenges with DOE
Thank You!

For more information: https://isotopes.gov/