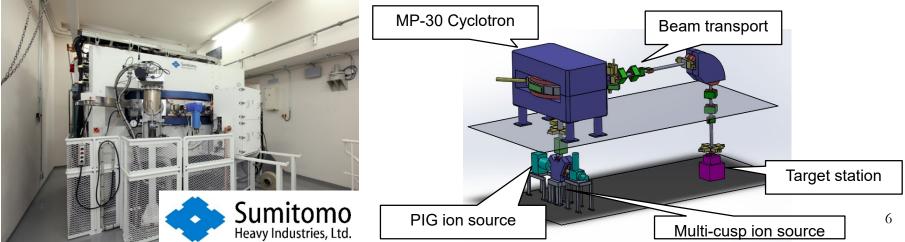


²¹¹At is available in Japan

Manufacturing facilities	Production route and Separation metod	Production	The main contributor of ²¹¹ At manufacturing
<u>R</u> esearch <u>C</u> enter for <u>N</u> uclear	²⁰⁹ Bi(α,2n) ²¹¹ At	More than	Dr. Atsushi Toyoshima
Physics(RCNP), Osaka University	Dry distillation	Two decades	Prof. Atsushi Shinohara
<u>Takasaki Ion Accelerators for Advanced</u> <u>Radiation Application(TIARA)</u> , Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology(QST)	²⁰⁹ Bi(α,2n) ²¹¹ At Dry distillation	Since 2012	Dr. Shigeki Watanabe Dr. Noriko S. Ishioka
Quantum Medical Science Directorate, National Institute of Radiological Sciences(NIRS), National Institutes for Quantum and Radiological Science and Technology(QST)	²⁰⁹ Bi(α,2n) ²¹¹ At Dry distillation	Sine 2013	Dr. Katsuyuki Minegishi Dr. Kotaro Nagatsu
Nishina Center for Accelerator-Based Science, Institute of Physical and Chemical	²⁰⁹ Bi(α,2n) ²¹¹ At	Since 2015	Since 2015 Dr. Hiromitsu Haba
Research(Riken)	Dry distillation	Since 2015	
Advanced Clinical Research	²⁰⁹ Bi(α,2n) ²¹¹ At		Dr. Kohshin Washiyama
Center(ACRC) , Fukushima Medical University(FMU)	Dry distillation	Since 2016	Prof. Kazuhiro Takahashi
The tandem accelerator facility , Nuclear Science Research Institute, Japan Atomic Energy Agency(JAEA)	²⁰⁹ Bi(⁷ Li,5n) ²¹¹ Rn/ ²¹¹ At Dry & Wet chemistry	Since 2011	Dr. Ichiro Nishinaka Dr. Kazuyuki Hashimoto

Short-lived RI supply platform program (since 2016)

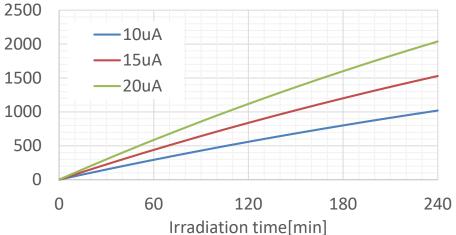
This program will provide stable supply of research radioisotopes throughout the year and technical support for safe handling.

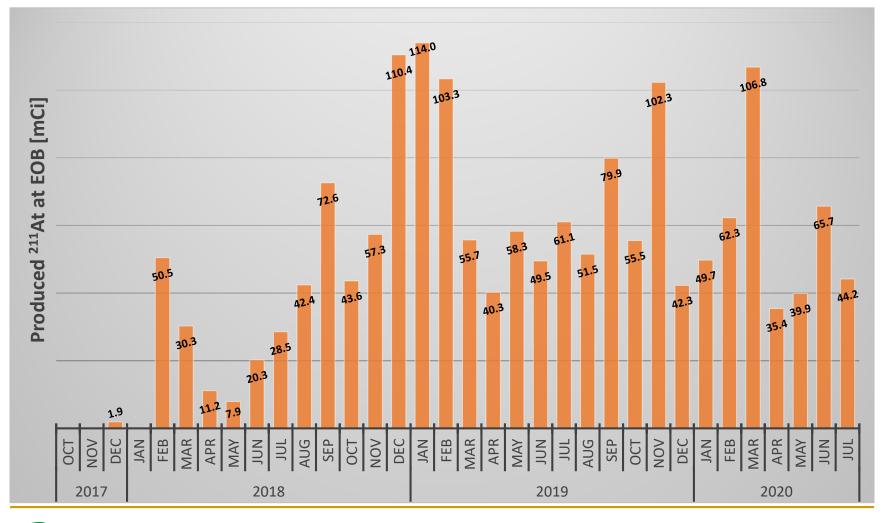

- 1. Supply of short life isotopes that cannot be purchased from the commercial base.
- 2. A prompt and stable supply by the world's highest level of accelerator facility association.
- Support for the promotion of basic research in a wide range of fields: ex. Development of probes for next generation PET, development of next generation therapeutic drugs, metabolic research of biological trace elements, etc.

•	Research Center for Nuclear Physics[RCNP], Osaka
	University (Osaka)
•	Nishina Center for Accelerator-Based Science, Riken (Tokyo)
•	Cyclotron and Radioisotope Center [CYRIC], Tohoku
	University (Sendai)
•	Research Center for ELectron PHoton Science (ELPH),

- Tohoku University (Sendai)
 TIARA, Takasaki QST (Takasaki)
- Quantum Medical Science Directorate, NIRS, QST (Chiba)

⁷Be, ¹¹C, ¹⁸F, ¹⁵O, ²⁴Na, ²⁸Mg, ^{38,39}Cl, ^{38,42,43}K, ^{43,46,47}Sc, ⁴⁴Ti, ⁴⁸V, ⁵⁵Fe, ^{56,57,58}Co, ⁵⁷Ni, ^{61,64,67}Cu, ⁷⁴As, ^{83,84,86}Rb, ^{86,87,90}Y, ^{88,89,89m,95}Zr,....²⁰⁷Bi, ^{207,210,211}At, ²¹³Fr, ²³⁸Np, ²⁵⁵Md


Middle sized cyclotron; MP-30 at Fukushima Medical University


[MBq]

Proton Current 400 x4
Proton
Proton
Proton Current 100 μA
Energy 8-15 MeV (Valuable)
Deuteron Current 50 μA
Energy 32 MeV
Alpha Current 30 μA
Ion Source External(PIG:α+Multi-cups:P,D
Extraction Port 1
Max. Targets Depend on Requirement
Power 150 kW
Room W6.0xD5.5xH3.6
Non Shield Weight 60 ton

Estimated production yield of ²¹¹At at TTY = 30.7 MBq/µAh

Monthly production of ²¹¹At at FMU

FUKUSHIMA MEDICAL UNIVERSITY Advanced Clinical Research Center

Summary

- Before 2010, Japan has only 1 facility that produced ²¹¹At.
- Owing to the advent of ²²³Ra with its efficacy to prolong the overall survival of metastatic HRPC patients, Japanese physician change their opinion and they are interested in using α emitters.
- Due to the availability of target materials and the usability of cyclotron that can produce α emitters, ²¹¹At would be the most appropriate candidate to manufacture.
- There exist 5 facilities to produce ²¹¹At by direct reaction
- There also exist one facility to produce ²¹¹Rn that will be a generator to produce ²¹¹At.
- Due to the short half-life of ²¹¹At, At-related chemistry and preclinical studies have been restricted to the ²¹¹At production site or its vicinity. However, since the platform has been launched, the availability and sustainable supply of ²¹¹At have improved than ever, and as a result, many researchers have had more opportunities to come into contact with ²¹¹At.

