# US DOE Tri-Lab Production Effort to Provide Accelerator-Produced <sup>225</sup>Ac for Radiotherapy: 2019 Update

Kevin John (LANL), Eva Birnbaum (LANL), Rose Boll (ORNL), Ariel Brown (ORNL, NIDC), Mark Brugh (LANL), Jason Cooley (LANL), Roy Copping (ORNL), Cathy Cutler (BNL), Ashley Dame (ORNL), Sandra Davern (ORNL), David Denton (ORNL), Michael Fassbender (LANL), Kevin Felker (ORNL, NIDC), Mitch Ferren (ORNL, NIDC), Jonathan Fitzsimmons (BNL), Kevin Gaddis (ORNL), Justin Griswold (ORNL), Dohyun Kim (BNL), Dmitri Medvedev (BNL), Saed Mirzadeh (ORNL), Karen Murphy (ORNL), F. Meiring Nortier (LANL), Eric Olivas (LANL), Allison Peacock (ORNL), David Reass (LANL), Karen Sikes (ORNL, NIDC), Daniel Stracener (ORNL), C. Etienne Vermeulen (LANL), Lance Wyant (ORNL)

#### <sup>225</sup>Ac Supply and Demand

<sup>225</sup>Ac is a promising isotope for the treatment of cancer used in emerging Therapy (TAT) Alpha Targeted applications

Current worldwide supply of <sup>225</sup>Ac is 1200-1700 at mCi/yr\* estimated derived from <sup>229</sup>Th/ <sup>225</sup>Ac generators

Patient doses, as informed by clinical trials, are estimated at:

- <sup>225</sup>Ac: 0.3-5 μCi per patient kg
- <sup>213</sup>Bi: 1 mCi per patient kg

#### <sup>225</sup>Ac Supply Considerations

Projection of <sup>225</sup>Ac demand assuming multiple, approved <sup>225</sup>Ac and <sup>213</sup>Bi drugs and robust clinical R&D programs could be in the hundreds of Ci/year\*\*

\*International Atomic Energy Agency. Technical Meeting Report "Alpha Emitting Radionuclides and Radiopharmaceuticals for Therapy" IAEA Headquarters Vienna, Austria. 24-28 June 2013

\*\*US DOE Offices of Nuclear Energy and Nuclear Physics "2008 Workshop on The Nation's Needs for Isotopes: Present and Future" Rockville, MD August **2008** 

| Facility                                         | Nuclear Reaction                                                                                                                                                    |                                                                                                                                                      |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reactor (thermal neutrons)                       | <sup>226</sup> Ra(3n,γ) <sup>229</sup> Ra → <sup>229</sup> Ac→ <sup>229</sup> Th<br><sup>228</sup> Ra(n,γ) <sup>229</sup> Ra → <sup>229</sup> Ac→ <sup>229</sup> Th | Current s<br>derived f<br><sup>229</sup> Th tha<br>limited st<br>New sou<br>required<br>based ph<br>The high<br>route is c<br>leverage<br>capabiliti |
| Accelerator<br>(electrons)                       | <sup>226</sup> Ra(γ,n) <sup>225</sup> Ra→ <sup>225</sup> Ac                                                                                                         |                                                                                                                                                      |
| Accelerator (low<br>energy particles)            | $^{226}$ Ra(p,2n) <sup>225</sup> Ac<br>$^{226}$ Ra(α,n) $^{229}$ Th<br>$^{226}$ Ra(p,pn) $^{225}$ Ra→ $^{225}$ Ac<br>$^{232}$ Th(p,x) $^{229}$ Th                   |                                                                                                                                                      |
| Accelerator (high energy protons)                | 232Th(p,x) <sup>225</sup> Ac<br><sup>232</sup> Th(p,x) <sup>225</sup> Ra→ <sup>225</sup> Ac                                                                         |                                                                                                                                                      |
| Accelerator (high energy neutrons)               | <sup>226</sup> Ra(n,2n) <sup>225</sup> Ra→ <sup>225</sup> Ac                                                                                                        |                                                                                                                                                      |
| Hot Cell Facility ( <sup>233</sup> U processing) | <sup>229</sup> Th decay to <sup>225</sup> Ac                                                                                                                        |                                                                                                                                                      |

# Accelerator Production of <sup>225</sup>Ac



<sup>225</sup>Ac yield curve based on measured cross sections show that Ci-scale production is feasible at LANL and BNL

| Facility                      | Antio<br>Ac<br>(1 |
|-------------------------------|-------------------|
| LANL (100 MeV,<br>250-450 µA) |                   |
| BNL (200 MeV,<br>165 μA)      |                   |
| * 71                          |                   |

\* Theoretical maximum value assumed for production with 450 µA on target.

J.W. Weidner et al. Appl. Radiat. Isot. 70 (2012) 2602 J.W. Engle et al. Phys. Rev. C. 88 (2013) 014604 J.W. Engle et al. Radiochim. Acta 102 (2014) 569 J.R. Griswold et al. Appl. Radiat. Isot. 118 (2016) 366

supply of <sup>225</sup>Ac is from the decay of at was derived from stockpiles of <sup>233</sup>U

urces of material are to support <sup>225</sup>Acharmaceuticals

n-energy accelerator of interest as it es unique US facility

cipated Single Target -225 Yields at EOB 10 day irradiation)

1.3-2.3\* Ci

2.2 Ci

The Tri-Lab Effort: Leveraging Unique **National Resources** 



**ORNL - Approximately 25 years** of experience in the isolation of <sup>225</sup>Ac from fissile <sup>233</sup>U via <sup>229</sup>Th

LANL Isotope Facility (IPF) at 100 MeV incident energy up to 275 μ**A for routine** production



### **Accelerator-Produced**<sup>225</sup>Ac Overview

We've distributed over 275 mCi of acce produced <sup>225</sup>Ac/<sup>213</sup>Bi as part of the Tri-L effort

19 separate batches have been proces (since the start of the effort) with multip shipments per batch resulting in distribution 15 different customers/evaluators

The Tri-Lab effort has generated multip publications and patents (see US paten 9,951,399 and 9,555,140)

# <sup>225</sup>Ac Materials Evaluation Campaigns

Accelerator-produced <sup>225</sup>Ac/<sup>213</sup>Bi gener performance is equivalent to generators produced from <sup>229</sup>Th-derived <sup>225</sup>Ac

Direct labeling studies of the accelerate derived <sup>225</sup>Ac product are promising an equivalent to <sup>229</sup>Th-derived <sup>225</sup>Ac

Supported three biodistribution/dosimetry/toxicity studies assess impact of <sup>227</sup>Ac ( $t_{1/2} \cong 22$  years)







Production LANSCE;



**BNL Linac at the Brookhaven Linac Isotope Producer (BLIP)** 165 µA intensity to targets at incident energies ranging from 66-202 MeV

|           | <i>molecules</i><br><i>Molecules</i> <b>2019</b> , 24, 1921; doi:10.3390/molecules24101921                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | Article<br>Optimization of Cation Exchange for the Separation<br>of Actinium-225 from Radioactive Thorium,<br>Radium-223 and Other Metals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| lerator   | Jonathan Fitzsimmons <sup>1,*</sup> , Bryan Foley <sup>2,†,‡</sup> , Bryna Torre <sup>3,†,‡</sup> , Megan Wilken <sup>4</sup> , Cathy S. Cutler <sup>1</sup> , Leonard Mausner <sup>1</sup> and Dmitri Medvedev <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| _ab       | Talanta 175 (2017) 318–324         Contents lists available at ScienceDirect         Talanta         ELSEVIER         journal homepage: www.elsevier.com/locate/talanta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| sed<br>e  | Radiometric evaluation of diglycolamide resins for the chromatographic<br>separation of actinium from fission product lanthanides<br>Valery Radchenko <sup>a,b</sup> , Tara Mastren <sup>a</sup> , Catherine A.L. Meyer <sup>a</sup> , Alexander S. Ivanov <sup>c</sup> ,<br>Vyacheslav S. Bryantsev <sup>c</sup> , Roy Copping <sup>d</sup> , David Denton <sup>d</sup> , Jonathan W. Engle <sup>a,e</sup> ,<br>Justin R. Griswold <sup>d</sup> , Karen Murphy <sup>d</sup> , Justin J. Wilson <sup>a,f</sup> , Allison Owens <sup>d</sup> , Lance Wyant <sup>c</sup> ,<br>Eva R. Birnbaum <sup>a</sup> , Jonathan Fitzsimmons <sup>g</sup> , Dmitri Medvedev <sup>g</sup> , Cathy S. Cutler <sup>g</sup> ,<br>Leonard F. Mausner <sup>g</sup> , Meiring F. Nortier <sup>a</sup> , Kevin D. John <sup>a</sup> , Saed Mirzadeh <sup>d</sup> ,<br>Michael E. Fassbender <sup>a,*</sup> |
| ition to  | <ul> <li><sup>a</sup> Chemistry Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545, USA</li> <li><sup>b</sup> Life Science Division, TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada</li> <li><sup>c</sup> Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA</li> <li><sup>d</sup> Nuclear Security and Isotope Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA</li> <li><sup>d</sup> Department of Medical Physics, University of Wisconsin, Madison, WI 53705, USA</li> <li><sup>f</sup> Department of Chemistry &amp; Chemical Biology, Cornell University, Ithaca, NY 14853, USA</li> <li><sup>g</sup> Collider-Accelerator Department, Brookhaven National Laboratory, Bldg 801, Upton, NY 11973, USA</li> </ul>                                                             |
| e         | Applied Radiation and Isotopes 118 (2016) 366–374 Contents lists available at ScienceDirect Applied Radiation and Isotopes journal homepage: www.elsevier.com/locate/apradiso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ts        | Large scale accelerator production of <sup>225</sup> Ac: Effective cross sections for 78–<br>192 MeV protons incident on <sup>232</sup> Th targets <sup>*</sup><br>J.R. Griswold <sup>a,b,*,1</sup> , D.G. Medvedev <sup>c</sup> , J.W. Engle <sup>d</sup> , R. Copping <sup>a</sup> , J.M. Fitzsimmons <sup>c</sup> ,<br>V. Radchenko <sup>d</sup> , J.C. Cooley <sup>d</sup> , M.E. Fassbender <sup>d</sup> , D.L. Denton <sup>a</sup> , K.E. Murphy <sup>a</sup> , A.C. Owens <sup>a</sup> ,<br>E.R. Birnbaum <sup>d</sup> , K.D. John <sup>d</sup> , F.M. Nortier <sup>d</sup> , D.W. Stracener <sup>e</sup> , L.H. Heilbronn <sup>b</sup> , L.F. Mausner <sup>c</sup> ,<br>S. Mirzadeh <sup>a</sup>                                                                                                                                                                              |
|           | <ul> <li><sup>a</sup> Nuclear Security and Isotope Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States</li> <li><sup>b</sup> Department of Nuclear Engineering, University of Tennessee, Knoxville, TN 37996, United States</li> <li><sup>c</sup> Collider-Accelerator Department, Brookhaven National Laboratory, Upton, NY 11973, United States</li> <li><sup>d</sup> Los Alamos National Laboratory, Los Alamos, NM 87545, United States</li> <li><sup>e</sup> Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States</li> </ul>                                                                                                                                                                                                                                                                                   |
|           | Current Radiopharmaceuticals, 2018, 11, 215-222<br>RESEARCH ARTICLE<br>In vivo Evaluation of Free and Chelated Accelerator-produced Actinium-<br>225 - Radiation Dosimetry and Toxicity Results                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ator<br>S | Zewei Jiang <sup>1</sup> , Ekaterina Revskaya <sup>1</sup> , Darrell R. Fisher <sup>2</sup> and Ekaterina Dadachova <sup>3,*</sup><br><sup>1</sup> Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, 10461 USA; <sup>2</sup> Versant Medical Physics and<br>Radiation Safety, Richland, WA, USA; <sup>3</sup> University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada<br><b>"Our data demonstrates that accelerator-</b><br>produced <sup>225</sup> Ac is suitable for the<br>development of the pre-clinical and                                                                                                                                                                                                                                                                                                                                           |
| r-        | clinical targeted radionuclide therapy."                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| d are     | 0.19%<br>0.17%<br>0.15%<br>0.13%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| s to      | 0.17% U.15% 0.13% 0.13% 0.05% 0.05%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|           | 40 60 80 100 120 140 160 180 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

#### Accelerator-Produced <sup>225</sup>Ac Current Focus

General focus on increasing production frequency and volume in support of clinical R&D and clinical trials

Continued improvements to the design and preparation of thorium targets and radiochemical processing optimization

Continued improvement of shipping capabilities and shipping performance

Submittal of a Drug Master File to inform the FDA - helps our customer base, and protects our process

production

Continued focus on stakeholder and customer interactions

# **Approach to Routine Production** for Use in Approved Drugs

We have positioned ourselves to ensure a strong, reliable supply that meets the quality requirements and quantities needed for clinical application

- trials

Please see US DOE Isotope Program booth # 467 for additional details

#### Summary and Acknowledgements

The Tri-Lab effort is routinely producing <sup>225</sup>Ac and *product is available* for end users and shipments to multiple users have been completed [please contact the National Isotope Development Center at (865) 574-6984 or see their website <a href="https://www.isotopes.gov/">https://www.isotopes.gov/</a> for more details]

We have distributed over 275 mCi of accelerator produced <sup>225</sup>Ac to evaluators

<sup>227</sup>Ac content is clinically insignificant from a dosimetry/toxicity perspective – but challenges with perception and regulatory compliance remain; we have a well-defined forward path to address these challenges with DOE

We are working with companies and research hospitals in preparation to support Phase I trials - DMF development is underway

This research is supported by the U.S. Department of Energy Isotope **Program, managed by the Office of Science for Nuclear Physics** 



LA-UR-19-25067

Starting to execute facility vision with eye toward Stage 3 large scale

- reliable, consistent and routine production

 $\sqrt{}$  - large quantities for meaningful impact to preclinical studies and clinical

- experience with GMP production and regulatory compliance (as demonstrated by our <sup>82</sup>Sr production)