HFIR CAPABILITIES

Neutron Scattering research facilities at HFIR contain a world-class collection of instruments and unique thermal-neutron and cold-neutron scattering capabilities used for fundamental and applied research on the structure and dynamics of matter. Scientists can count scattered neutrons and measure their energies and the angles at which they scatter to obtain information about the nature of materials.

For example, understanding how proteins work is the key to unlocking the secrets of life. Proteins defend us against infection; however, in their mutant forms they contribute to the development of diseases such as cancer and AIDS. The key to understanding how individual proteins work is uncovering their shapes and structures. Cold-neutron scattering with the HFIR Bio-SANS instrument plays a vital role in this research.

Applied technology resulting from neutron scattering research includes the following:

- Development of better superconducting materials to provide less expensive electrical transmission.
- Development of better magnetic recording media for computer hard drives.
- Improvements in the material characteristics and production of plastics.
- Mapping of weld stresses in materials, such as those used in jet engine turbines and disc brakes.

Isotope Production

- Californium-252—used as a neutron source for reactor startups, in oil exploration in nondestructive examination of welds in oil and gas pipelines, for determining metal stress in military aircraft, for detecting explosive devices in aircraft luggage, and in treating certain types of cervical and brain cancer.
- Rhenium-188—used to treat cancer and arthritis and to prevent the restenosis or closure of arteries following angioplasty.
- Nickel-63—used in electron capture technology to detect explosives and drugs at airport checkpoints by the U.S. Department of Homeland Security.
- Iron-55—used as an X-ray fluorescence source, in mining applications, and for explosive detection.
- Lutetium-177—used for labeling therapeutic agents for intracellular targeting.
- Holmium-166—used in cancer radiotherapy and waste tomography.

Materials Irradiation Facilities are used to determine the effects of neutron irradiation on the properties and behavior of materials. Materials irradiation experiments are conducted to support programs such as the evaluation of new materials planned for use in advanced fission and fusion reactor concepts and in NASA deep space power programs. Materials irradiation at HFIR supports programs for fusion energy science, U.S./Japan collaborative agreements, NASA, DOE-NE Generation IV reactor research, naval reactor programs, Knoll Atomic Power Laboratory, and Bettis Laboratory.

Neutron Activation Analysis provides support for forensic science, environmental soil monitoring, nonproliferation, homeland security, and basic research.

INFORMATION

Research Reactors Division Director
Oak Ridge National Laboratory
P.O. Box 2008, Oak Ridge, TN 37831-6398
Phone: 865-574-1301, Fax: 865-574-0967

OAK RIDGE NATIONAL LABORATORY
MANAGED BY UT-BATTELLE FOR THE US DEPARTMENT OF ENERGY

ORNL 2007-G015148/gum
OPERATIONAL MISSION

“Provide safe, reliable, predictable, and efficient HFIR operation to support the neutron science mission.”

HISTORY and FUTURE

The High Flux Isotope Reactor (HFIR) first went critical on August 25, 1965. HFIR’s initial science mission was the production of transuranic isotopes. HFIR quickly became the nation’s best isotope production reactor. In 1970, the first pneumatic irradiation facility was installed to provide neutron activation analysis capabilities. In 1986, the number and size of HFIR’s material irradiation facilities were expanded. In 1987, a second pneumatic irradiation facility was added to further enhance its world-class neutron activation analysis capabilities. In 2000, the three original thermal beams were outfitted with new, enlarged tubes, which resulted in a three-fold increase in thermal neutron fluxes on sample, on par with or better than any facility in the world. In addition to these upgrades, the permanent beryllium reflector was replaced; therefore, another extended outage will not be required until 2021. In May of 2007, a new cold neutron beam facility was placed into operation, providing cold neutron beams with world-class brightness.

HFIR’s future is most certainly bright, and its expected life is estimated to last until 2040 or beyond. Continued upgrades have made HFIR facilities and science instruments world-class in both thermal and cold neutron scattering, isotope production, materials irradiation testing, and neutron activation analysis.

DESCRIPTION

HFIR is one of the world’s most powerful research reactor facilities. It is a versatile, 85-MW isotope production and test reactor, with the capability and facilities for performing a wide variety of irradiation experiments. It has a peak thermal neutron flux of 2.6×10^{15} neutrons per square centimeter per second, which is the highest in the western world. HFIR is a beryllium-reflected, light-water-cooled and -moderated flux-trap-type reactor that uses highly enriched uranium-235 as the fuel. A fuel cycle normally consists of full-power operation for a period of 23 to 27 days at 85 MW.

SCIENCE MISSION

HFIR has three main neutron science missions. The first mission of the reactor is to provide neutrons to support its neutron scattering facilities and instruments. This activity has grown in both scientific and economic importance and today provides much of the knowledge about the molecular and magnetic structures and behavior of materials. The second key mission of HFIR is to produce isotopes, including transuranic isotopes such as californium. These isotopes are used in research, industrial, and medical applications. The third mission is to provide facilities used to investigate the effects of neutron irradiation on the properties of materials and to perform neutron activation analysis.

Rendering of Cold Source and Beam Lines

Cold Neutron Guide Hall

HFIR Control Room

HFIR Reactor Vessel